已知f(x)=x2-2mx+3為[-2,2]上的單調(diào)函數(shù),則m的取值范圍為______.
∵f(x)=x2-2mx+3,
∴f(x)=(x-m)2+3-m2
則函數(shù)f(x)的對(duì)稱軸方程為x=m,
∵f(x)=x2-2mx+3為[-2,2]上的單調(diào)函數(shù),
∴m的取值范圍為m≤-2或m≥2,
故答案為:m≤-2或m≥2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(
1
3
)x
,x∈[-1,1],函數(shù)g(x)=f2(x)-2af(x)+3.
(1)若f(2x0-1)=
3
,求x0
;
(2)求g(x)的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在區(qū)間(-∞,0)上是增函數(shù)的是(  )
A.y=x2-4x+8B.y=丨x-1丨C.y=-
2
x-1
D.y=
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)在(-∞,+∞)上是減函數(shù),且a+b≤0,則下列各式成立的是( 。
A.f(a)+f(b)≤0B.f(a)+f(b)≥0
C.f(a)+f(b)≤f(-a)+f(-b)D.f(a)+f(b)≥f(-a)+f(-b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)是定義在[-1,1]上的減函數(shù),f(x-1)<f(2x-3),則x的取值范圍______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某上市股票在30天內(nèi)每股的交易價(jià)格p元與時(shí)間t(天)(0<t≤30且t∈N)組成有序數(shù)對(duì)(t,p),點(diǎn)(t,p)落在下面中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時(shí)間t(天)的部分?jǐn)?shù)據(jù)如下表所示.
第七天4101622
Q(萬股)36302418
(1)根據(jù)提供的圖象,寫出該種股票每股的交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系;
(3)用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)f(x)=kx+b的圖象與反比例函數(shù)g(x)=
m
x
的圖象都經(jīng)過點(diǎn)A(-2,6)和點(diǎn)B(4,n).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求函數(shù)g(x)=g(x)=
m
x
在[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=3-2|x|,g(x)=x2-2x,構(gòu)造函數(shù)y=F(x),定義如下:當(dāng)f(x)≥g(x)時(shí),F(xiàn)(x)=g(x);當(dāng)f(x)<g(x)時(shí),F(xiàn)(x)=f(x),那么F(x)( 。
A.有最大值3,最小值-1
B.有最大值7-2
7
,無最小值
C.有最大值3,無最小值
D.無最大值,也無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且對(duì)一切x>0,y>0滿足f(xy)=f(x)+f(y)則不等式f(x+6)+f(x)<2f(4)的解集為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案