下面使用的類比推理中恰當?shù)氖牵?nbsp; )
A.“若,則”類比得出“若,則” |
B.“”類比得出“” |
C.“”類比得出“” |
D.“”類比得出“” |
科目:高中數(shù)學 來源: 題型:解答題
給出30個數(shù):1,2,4,7,……,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1, 第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,依此類推.要計算這30個數(shù)的和,現(xiàn)已給出了該問題算法的程序框圖(如圖所示)
(I)請在圖中判斷框內(nèi)(1)處和執(zhí)行框中的(2)處填上合適的語句,使之能完成該題算法功能;
(II)根據(jù)程序框圖寫出程序.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,假設正確的是( )
A.假設三內(nèi)角都不大于60度 |
B.假設三內(nèi)角都大于60度 |
C.假設三內(nèi)危至多有一個大于60度 |
D.假設三內(nèi)角至多有兩個大于60度 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
圖1,2,3,4分別包含1,5,13和25個互不重疊的單位正方形,按同樣的方式構造圖形,則第個圖包含______個互不重疊的單位正方形。
圖1 圖2 圖3 圖4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
法國數(shù)學家費馬觀察到,,,都是質(zhì)數(shù),于是他提出猜想:任何形如N*)的數(shù)都是質(zhì)數(shù),這就是著名的費馬猜想. 半個世紀之后,善于發(fā)現(xiàn)的歐拉發(fā)現(xiàn)第5個費馬數(shù)不是質(zhì)數(shù),從而推翻了費馬猜想,這一案例說明( )
A.歸納推理,結(jié)果一定不正確 | B.歸納推理,結(jié)果不一定正確 |
C.類比推理,結(jié)果一定不正確 | D.類比推理,結(jié)果不一定正確 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
用數(shù)學歸納法證明1+2+3+…+n2=,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1 |
B.(k+1)2 |
C. |
D.(k2+1)+(k2+2)+…+(k+1)2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com