【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在極坐標系(與平面直角坐標系取相同的長度單位,且以原點為極點,以軸非負半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程及直線的直角坐標方程;
(2)設是曲線上的任意一點,求點到直線的距離的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.
(Ⅰ)求曲線C的方程;
(Ⅱ)設Q為曲線C上的一個不在軸上的動點,O為坐標原點,過點作OQ的平行線交曲線C于M,N兩個不同的點, 求△QMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了推動數(shù)學教學方法的改革,學校將高一年級部分生源情況基本相同的學生分成甲、乙兩個班,每班各40人,甲班按原有模式教學,乙班實施教學方法改革.經(jīng)過一年的教學實驗,將甲、乙兩個班學生一年來的數(shù)學成績?nèi)∑骄鶖?shù),兩個班學生的平均成績均在,按照區(qū)間,,,,進行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.
完成表格,并判斷是否有以上的把握認為“數(shù)學成績優(yōu)秀與教學改革有關”;
(2)從乙班,,分數(shù)段中,按分層抽樣隨機抽取7名學生座談,從中選三位同學發(fā)言,記來自發(fā)言的人數(shù)為隨機變量,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩種產(chǎn)品的質量,從中分別隨機抽取了10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測量數(shù)據(jù)的莖葉圖.規(guī)定:當產(chǎn)品中的此中元素的含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.
(1)試用樣品數(shù)據(jù)估計甲、乙兩種產(chǎn)品的優(yōu)等品率;
(2)若從甲、乙兩種產(chǎn)品的優(yōu)等品中各隨機抽取1件,抽到的2件優(yōu)等品中,“甲產(chǎn)品的含量28毫克優(yōu)等品必須在內(nèi),且乙產(chǎn)品的含量28毫克優(yōu)等品不包含在內(nèi)”為事件,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),設關于的方程有個不同的實數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某二手車交易市場對某型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進行整理,得到如下的對應數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求關于的回歸直線方程;(參考公式:,.)
(2)已知每輛該型號汽車的收購價格為萬元,根據(jù)(1)中所求的回歸方程,預測為何值時,銷售一輛該型號汽車所獲得的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的方程是,曲線的參數(shù)方程是(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求直線與曲線的極坐標方程;
(2)若射線與曲線交于點,與直線交于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調區(qū)間;
(Ⅱ)若函數(shù)有兩個極值點,且恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計高三學生參加社區(qū)服務的次數(shù)在區(qū)間(10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com