【題目】平面直角坐標(biāo)系中,傾斜角為的直線l過點(diǎn),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程(為常數(shù))和曲線的直角坐標(biāo)方程;
(2)若直線與交于,兩點(diǎn),且,求傾斜角的值.
【答案】(1)直線的參數(shù)方程為(為參數(shù)),曲線的直角坐標(biāo)方程;(2).
【解析】
(1)直接寫出直線的參數(shù)方程,將曲線的極坐標(biāo)方程化為,再將代入上式即可得解;
(2)把直線的參數(shù)方程代入中,得,
由一元二次方程根與系數(shù)的關(guān)系得:,再根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義,得,求出的值即可.
(1)直線的參數(shù)方程為(為參數(shù)),
曲線: ,即,
將代入上式得曲線的直角坐標(biāo)方程為:;
(2)把直線的參數(shù)方程代入中,得
,
設(shè),對(duì)應(yīng)的參數(shù)分別為,
由一元二次方程根與系數(shù)的關(guān)系得:,
根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義,得,得或.
又,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形中,,與相交于點(diǎn),將沿折起,使頂點(diǎn)至點(diǎn),在折起的過程中,下列結(jié)論正確的是( )
A.B.存在一個(gè)位置,使為等邊三角形
C.與不可能垂直D.直線與平面所成的角的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩動(dòng)圓和(),把它們的公共點(diǎn)的軌跡記為曲線,若曲線與軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱柱的底面是菱形,平面,點(diǎn)是側(cè)棱上的點(diǎn)
(1)證明:平面;
(2)若是的中點(diǎn),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出定理:在圓錐曲線中,是拋物線的一條弦,是的中點(diǎn),過點(diǎn)且平行于軸的直線與拋物線的交點(diǎn)為.若兩點(diǎn)縱坐標(biāo)之差的絕對(duì)值,則的面積,試運(yùn)用上述定理求解以下各題:
(1)若,所在直線的方程為,是的中點(diǎn),過且平行于軸的直線與拋物線的交點(diǎn)為,求;
(2)已知是拋物線的一條弦,是的中點(diǎn),過點(diǎn)且平行于軸的直線與拋物線的交點(diǎn)為,分別為和的中點(diǎn),過且平行于軸的直線與拋物線分別交于點(diǎn),若兩點(diǎn)縱坐標(biāo)之差的絕對(duì)值,求和;
(3)請(qǐng)你在上述問題的啟發(fā)下,設(shè)計(jì)一種方法求拋物線:與弦圍成成的“弓形”的面積,并求出相應(yīng)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若關(guān)于的方程有四個(gè)不同的解,求實(shí)數(shù)應(yīng)滿足的條件;
(3)在(2)條件下,若成等比數(shù)列,用表示t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若,則;②的圖象關(guān)于點(diǎn)對(duì)稱;③函數(shù)在上單調(diào)遞增;④的圖象向右平移個(gè)單位長(zhǎng)度后所得圖象關(guān)于軸對(duì)稱.其中所有正確結(jié)論的編號(hào)是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果對(duì)任意,恒有成立,則稱為階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求證:函數(shù)在上無零點(diǎn);
(3)已知函數(shù)為階縮放函數(shù),且當(dāng)時(shí), 的取值范圍是,求在上的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com