不等式|1-x|>|
2
x
|的解集為
 
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:由題意可得|x(x-1)|>2,故有x(x-1)>2①,或 x(x-1)<-2②.分別求得①、②的解集,再取并集,即得所求.
解答: 解:由不等式|1-x|>|
2
x
|,可得|x(x-1)|>2,
∴x(x-1)>2①,或 x(x-1)<-2②.
解①求得x<-1,或 x>2,解②求得x∈∅,
綜上可得,不等式的解集為(-∞,-1)∪(2,+∞),
故答案為:(-∞,-1)∪(2,+∞).
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化和分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)O是△ABC內(nèi)的一點(diǎn),∠AOB=150°,∠BOC=90°設(shè)
OA
=
a
,
OB
=
b
,
OC
=
c
,且|
a
|=2,|
b
|=1,|
c
|=3,試用
a
b
表示
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如下表
商店名稱ABCDE
銷售額x(千萬元)35679
利潤額y(百萬元)23345
(Ⅰ)畫出散點(diǎn)圖.觀察散點(diǎn)圖,并判斷兩個(gè)變量是否呈線性相關(guān),且求
.
x
,
.
y

(Ⅱ)用最小二乘法計(jì)算利潤額y對(duì)銷售額x的回歸直線方程.
(Ⅲ)當(dāng)銷售額為4(千萬元)時(shí),估計(jì)利潤額的大小
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-tx,t∈R
(1)求該函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤-1恒成立,試確定實(shí)數(shù)t的取值范圍;
(3)證明:
ln1
2
+
ln2
3
+
ln3
4
+…+
lnn
n+1
n(n-1)
4
,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中有大小形狀相同的4個(gè)白球和2個(gè)紅球,從中摸出3個(gè)球.問:
(1)3個(gè)球中全部是白球的摸法有多少種;
(2)3個(gè)球中恰有1個(gè)紅球的摸法有多少種;
(3)3個(gè)球中至多有一個(gè)白球的摸法有多少種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足條件
x-y-5≥0
x+2y≥0
x≤5
,z=x+yi(i為虛數(shù)單位),則|z-1+3i|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
+
b
|=|
a
-
b
|,那么
a
 
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b為正數(shù),且2a+b=1,則
1
2a
+
1
b
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①已知△ABC中,
AB
=
a
,
BC
=
b
,B是△ABC中最大角,且
a
b
<0,則△ABC為鈍角三角形;
②若sinA=
4
5
,則
5sinA+8
15cosA-7
=6;
③若sinα=
5
5
,sinβ=
10
10
且α、β為銳角,則α+β=
π
4
;
④已知數(shù)列{an}的前n項(xiàng)和Sn=aqn(a≠0,q≠1,q為非零常數(shù)),則數(shù)列{an}為等比數(shù)列.
其中正確的命題序號(hào)
 
.(注:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案