整數(shù)的數(shù)對(duì)列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2), (4,1),(1,5),(2,4),則第61個(gè)數(shù)對(duì)是     

試題分析:我們可以在平面直角坐標(biāo)系中,將:(1,1)、(1,2)、(2,1)、(1,3)、(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,按順序連線,然后分析這些點(diǎn)的分布規(guī)律,然后歸納推斷出,點(diǎn)的排列規(guī)律,再求出第60個(gè)數(shù)對(duì).解:我們?cè)谄矫嬷苯亲鴺?biāo)系中,將各點(diǎn)按順序連線,如下圖示:

有(1,1)為第1項(xiàng),(1,2)為第2項(xiàng),(1,3)為第4項(xiàng),…(1,11)為第56項(xiàng),因此第60項(xiàng)為(5,7).則可知第61個(gè)數(shù)對(duì)是(6,6)故答案為:(6,6).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是歸納推理,歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列{}中,,,設(shè),
(1)證明:數(shù)列{}是等差數(shù)列;
(2)求數(shù)列{}的前n項(xiàng)和;
(3)設(shè),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列中,,則(   )
A.4B.8 C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若等比數(shù)列{a}的前三項(xiàng)和為13,首項(xiàng)為1,則其公比為
A.2或-1B.3或-4C.4或-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在等比數(shù)列中,,且的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若△的內(nèi)角的對(duì)邊分別為,且成等比數(shù)列,,則的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等比數(shù)列中,,則的值為_(kāi)______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:若數(shù)列對(duì)任意,滿足為常數(shù)),稱數(shù)列為等差比數(shù)列.
(1)若數(shù)列項(xiàng)和滿足,求的通項(xiàng)公式,并判斷該數(shù)列是否為等差比數(shù)列;
(2)若數(shù)列為等差數(shù)列,試判斷是否一定為等差比數(shù)列,并說(shuō)明理由;
(3)若數(shù)列為等差比數(shù)列,定義中常數(shù),數(shù)列的前項(xiàng)和為, 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等比數(shù)列{}的公比, 已知=1,,則{}的公比為             。

查看答案和解析>>

同步練習(xí)冊(cè)答案