【題目】如圖,已知四邊形和均為直角梯形,,且,平面平面,.
(1)求證:平面;
(2)求平面和平面所成銳二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】在棱長均相等的正三棱柱ABCA1B1C1中,D為BB1的中點,F(xiàn)在AC1上,且DF⊥AC1,則下述結論:
①AC1⊥BC;
②AF=FC1;
③平面DAC1⊥平面ACC1A1,其中正確的個數為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三年級有3名男生和1名女生為了報某所大學,事先進行了多方詳細咨詢,并根據自己的高考成績情況,最終估計這3名男生報此所大學的概率都是,這1名女生報此所大學的概率是.且這4人報此所大學互不影響。
(Ⅰ)求上述4名學生中報這所大學的人數中男生和女生人數相等的概率;
(Ⅱ)在報考某所大學的上述4名學生中,記為報這所大學的男生和女生人數的和,試求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ;
(1)若f(x)的定義域為 (-∞,+∞), 求實數a的范圍;
(2)若f(x)的值域為 [0, +∞), 求實數a的范圍
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com