已知三個(gè)平面α,β,γ,若β⊥γ,且α與γ相交但不垂直,直線a,b,c分別為α,β,γ內(nèi)的直線,則下列命題中:①任意b?β,b⊥γ;②任意b?β,b∥γ; ③存在a?α,a⊥γ; ④存在a?α,a∥γ; ⑤任意c?γ,c∥α; ⑥存在c?γ,c⊥β.真命題的序號(hào)是 .
【答案】分析:根據(jù)直平面與平面垂直的性質(zhì)定理,結(jié)合已知條件可得①③錯(cuò)誤,而⑥是正確的;根據(jù)平面與平面的位置關(guān)系,結(jié)合直線與平面平行的判定定理,可得②⑤錯(cuò)誤,而④是正確的.因此不難得到正確答案.
解答:解:對(duì)于①,根據(jù)β⊥γ,可得在β內(nèi)與交線垂直的直線,必定與垂直于γ,但是條件中b?β,沒(méi)有指出b和交線垂直,故b⊥γ不成立,因此①錯(cuò)誤;
對(duì)于②,當(dāng)β內(nèi)的直線b與β、γ的交線平行時(shí),有b∥γ,但是條件中b?β,沒(méi)有指出和交線平行,故②錯(cuò)誤;
對(duì)于③,當(dāng)α⊥γ成立時(shí),就存在a?α,a⊥γ,但條件中α與γ相交但不垂直,故不存在a滿足a⊥γ,故③錯(cuò)誤;
對(duì)于④,α與γ相交,設(shè)交線為l,則當(dāng)a?α,a∥l時(shí),a∥γ成立,故④正確;
對(duì)于⑤,因?yàn)棣僚cγ相交,設(shè)交線為l,則當(dāng)c?α,但c與l不平行時(shí),c與γ也不平行,故⑤錯(cuò)誤;
對(duì)于⑥,因?yàn)棣隆挺茫O(shè)它們的交線為m,則若c?γ,且c⊥m,必定有c⊥β,故⑥正確.
故答案為:④⑥
點(diǎn)評(píng):本題以空間平面與平面的位置關(guān)系為載體,著重考查了直線與平面垂直的判定、直線與平面平行的判定等知識(shí)點(diǎn),屬于基礎(chǔ)題.