已知數(shù)列{an}是正項等比數(shù)列,公比q≠1,若lga2是lga1和1+lga4的等差中項,且a1a2a3=1.
(1)求數(shù)列{an}的通項公式
(2)設(shè)數(shù)學公式,求數(shù)列{cn}的前n項和Sn

解:(1)由題知2lga2=lga1+(1+lga4)=lg(10a1a4),
,即
∵a1>0,q>0,∴
∵等比數(shù)列{an}中,a1a2a3=1,
∴a2=1,∴
故{an}的通項公式為.…(7分)
(2)由(1)得,
.…(12分)
分析:(1)由題知2lga2=lga1+(1+lga4)=lg(10a1a4),即,利用等比數(shù)列的通項,代入可求公比q,進而可求a1,通項
(2)由(1)得,利用裂項相消可求和
點評:本題主要考查了等差數(shù)列的性質(zhì)及等比數(shù)列的通項公式的應用,數(shù)列的裂項求和是數(shù)列求和中的常用方法,要注意掌握
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是正項等差數(shù)列,給出下列判斷:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正確的是( 。
A、①④B、①②④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是正項等比數(shù)列,公比q≠1,若lga2是lga1和1+lga4的等差中項,且a1a2a3=1.
(1)求數(shù)列{an}的通項公式
(2)設(shè)cn=
1n(3-lgan)
(n∈N*)
,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是正項等比數(shù)列,若a1=32,a4=4,則數(shù)列{log2an}的前n項和Sn的最大值為
15
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•南寧模擬)已知數(shù)列{an}是正項等比數(shù)列,若a2=2,2a3+a4=16則數(shù)列{an}的通項公式為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•桂林模擬)已知數(shù)列{an}是正項數(shù)列,其首項a1=3,前n項和為Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求數(shù)列{an}的第二項a2及通項公式;
(2)設(shè)bn=
1
Sn
,記數(shù)列{bn}的前n項和為Kn,求證:Kn
17
21

查看答案和解析>>

同步練習冊答案