已知某圓的極坐標方程是,求:
(1)求圓的普通方程和一個參數(shù)方程;
(2)圓上所有點的最大值和最小值.
(1)即圓的普通方程為:。 參數(shù)方程為:    (為參數(shù)) ;(2)最大值為:9,最小值為:1.

試題分析:(1)圓的普通方程與圓的極坐標方程之間的轉(zhuǎn)換關系在于圓上一點與極徑,極角間的關系:,圓的普通方程與圓的參數(shù)方程的關系也在于此,即圓上一點與圓半徑,圓上點與圓心連線與軸正向夾角的關系:;(2)利用圓的參數(shù)方程,將轉(zhuǎn)化為關于的三角函數(shù)關系求最值,注意這里處理要注意用換元法(不同于一般三角函數(shù)處理方法,即轉(zhuǎn)化為的形式),得到三角函數(shù)與二次函數(shù)的復合函數(shù).
試題解析:
由圓上一點與極徑,極角間的關系:,
,

即圓的普通方程為:。                               2分
可得圓心坐標為 ,半徑  
所以其參數(shù)方程為:    (為參數(shù)) 。                         4分
由圓上一點與圓的參數(shù)方程的關系得:
          5分
,, 則.
所以                                       6分
時,最小值是1;                                                    8分
時,最大值是9.                                                     10分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線的極坐標方程為,圓M的參數(shù)方程為。求:(1)將直線的極坐標方程化為直角坐標方程;
(2)求圓M上的點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的方程為,直線方程為(t為參數(shù)),直線與C的公共點為T.
(1)求點T的極坐標;
(2)過點T作直線,被曲線C截得的線段長為2,求直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系xoy中,以坐標原點為極點,x軸為極軸建立極坐標系,半圓C的極坐標方程為
.
(1)求C的參數(shù)方程;
(2)設點D在C上,C在D處的切線與直線垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知正方形的四個頂點分別為,,,點分別在線段上運動,且,設交于點,則點的軌跡方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

試在坐標平面yOz內(nèi)的直線2y-z=1上確定一點P,使P到點Q(-1,0,4)的距離最小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系xOy中,點P的直角坐標為(1,-
3
)
、若以原點O為極點,x軸正半軸為極軸建立極坐標系,則點P的極坐標可以是( 。
A.(1,-
π
3
)
B.(2,
3
)
C.(2,-
π
3
)
D.(2,-
3
)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面直角坐標系中,直線l的參數(shù)方程是
x=t
y=
3
t
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.
(1)求直線l的極坐標方程;
(2)若直線l與曲線C相交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

化極坐標方程為直角坐標方程為(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案