分析 (Ⅰ)利用直方圖與平行四邊形的性質可得:BC1∥AD1,利用線面平行的判定定理可得BC1∥平面AB1D1,同理可得:BD∥平面AB1D1,即可證明:平面C1BD∥平面AB1D1.
(Ⅱ):如圖,連接C1O,利用直方圖的性質與線面垂直的性質定理可得:AA1⊥BD,又BD⊥AC,可得BO⊥平面ACC1A1.因此∠OC1B為直線BC1與平面ACC1A1所成的角.利用直角三角形的邊角關系即可得出.
解答 (Ⅰ)證明:∵ABCD-A1B1C1D1為正方體,
∴在平行四邊形ABC1D1中,BC1∥AD1,
又AD1?平面AB1D1,BC1?平面AB1D1,
∴BC1∥平面AB1D1,
同理可得:BD∥平面AB1D1,且BC1∩BD=B,
∴平面C1BD∥平面AB1D1.
(Ⅱ)解:如圖,連接C1O,
由AA1⊥平面ABCD,又BD?平面ABCD,∴AA1⊥BD,
又∵四邊形ABCD為正方形,∴BD⊥AC,又AC∩AA1=A,
∴BO⊥平面ACC1A1.∴C1O為BC1在平面ACC1A1內的射影
∴∠OC1B為直線BC1與平面ACC1A1所成的角.
在 Rt△OC1B中,∵BO=12BC1,∴sin∠OC1B=BOBC1=12,
又∵∠O{C_1}B∈(0,\frac{π}{2}),∴∠O{C_1}B=\frac{π}{6},
∴直線BC1與平面ACC1A1所成的角為\frac{π}{6}.
點評 本題考查了空間位置關系與空間角、線面、面面平行的判定與性質定理、線面、面面垂直的判定與性質定理、空間角,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 7或-8 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com