【題目】已知數(shù)列{an}是單調(diào)遞增的等差數(shù)列,a2+a4=14且a2﹣1,a3+1,a4+7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為Sn.
【答案】(1)an=3+2(n﹣1)=2n+1,n∈N*;(2).
【解析】
(1)設(shè)數(shù)列{an}的公差為d,d>0,由等差數(shù)列的通項(xiàng)公式和等比數(shù)列的中項(xiàng)性質(zhì),解方程可得公差和首項(xiàng),進(jìn)而得到所求通項(xiàng)公式;
(2)求得3(),由數(shù)列的裂項(xiàng)相消求和,化簡(jiǎn)計(jì)算可得所求和.
解:(1)設(shè)數(shù)列{an}的公差為d,
由a2+a4=14,得2a3=14,即a3=7.
由a2﹣1,a3+1,a4+7成等比數(shù)列,得(a3+1)2=(a2﹣1)(a4+7),即(7+1)2=(6﹣d)(14+d),
解得d=2或d=﹣10.
又?jǐn)?shù)列{an}是單調(diào)遞增的等差數(shù)列,故d>0,則d=2,a1=3,
數(shù)列{an}的通項(xiàng)公式為an=3+2(n﹣1)=2n+1,n∈N*;
(2)3(),
可得Sn=3()=3().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)在曲線y=x2(x>0)上.已知A(0,-1),,n∈N*.記直線APn的斜率為kn.
(1)若k1=2,求P1的坐標(biāo);
(2)若k1為偶數(shù),求證:kn為偶數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,和均為以為直角頂點(diǎn)的等腰直角三角形,,,,,為的中點(diǎn).
(1)求證:;
(2)求二面角的大小;
(3)設(shè)為線段上的動(dòng)點(diǎn),使得平面平面,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為提高市場(chǎng)銷售業(yè)績(jī),促進(jìn)某產(chǎn)品的銷售,隨機(jī)調(diào)查了該產(chǎn)品的月銷售單價(jià)(單位:元/件)及相應(yīng)月銷量(單位:萬件),對(duì)近5個(gè)月的月銷售單價(jià)和月銷售量的數(shù)據(jù)進(jìn)行了統(tǒng)計(jì),得到如下表數(shù)據(jù):
月銷售單價(jià)(元/件) | 9 | 10 | 11 | ||
月銷售量(萬件) | 11 | 10 | 8 | 6 | 5 |
(Ⅰ)建立關(guān)于的回歸直線方程;
(Ⅱ)該公司開展促銷活動(dòng),當(dāng)該產(chǎn)品月銷售單價(jià)為7元/件時(shí),其月銷售量達(dá)到18萬件,若由回歸直線方程得到的預(yù)測(cè)數(shù)據(jù)與此次促銷活動(dòng)的實(shí)際數(shù)據(jù)之差的絕對(duì)值不超過萬件,則認(rèn)為所得到的回歸直線方程是理想的,試問:(Ⅰ)中得到的回歸直線方程是否理想?
(Ⅲ)根據(jù)(Ⅰ)的結(jié)果,若該產(chǎn)品成本是5元/件,月銷售單價(jià)為何值時(shí)(銷售單價(jià)不超過11元/件),公司月利潤的預(yù)計(jì)值最大?
參考公式:回歸直線方程,其中,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)在上存在兩個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測(cè)生產(chǎn)線上某種零件的質(zhì)量,從產(chǎn)品中隨機(jī)抽取100個(gè)零件,測(cè)量其尺寸,得到如圖所示的頻率分布直方圖.若零件尺寸落在區(qū)間之內(nèi),則認(rèn)為該零件合格,否則認(rèn)為不合格.其中,分別表示樣本的平均值和標(biāo)準(zhǔn)差,計(jì)算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)已知一個(gè)零件的尺寸是,試判斷該零件是否合格;
(2)利用分層抽樣的方法從尺寸在的樣本中抽取6個(gè)零件,再從這6個(gè)零件中隨機(jī)抽取2個(gè),求這2個(gè)零件中恰有1個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人們通常以分貝(符號(hào)是)為單位來表示聲音強(qiáng)度的等級(jí),30~40分貝是較理想的安靜環(huán)境,超過50分貝就會(huì)影響睡眠和休息,70分貝以上會(huì)干擾談話,長期生活在90分貝以上的嗓聲環(huán)境,會(huì)嚴(yán)重影響聽力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達(dá)150分貝的噪聲環(huán)境中,聽覺器官會(huì)發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽力,為了保護(hù)聽力,應(yīng)控制噪聲不超過90分貝,一般地,如果強(qiáng)度為的聲音對(duì)應(yīng)的等級(jí)為,則有,則的聲音與的聲音強(qiáng)度之比為( )
A.10B.100C.1000D.10000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓相外切,且與直線相切.
(1)記圓心的軌跡為曲線,求的方程;
(2)過點(diǎn)的兩條直線與曲線分別相交于點(diǎn)和,線段和的中點(diǎn)分別為.如果直線與的斜率之積等于1,求證:直線經(jīng)過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,6l,95,則該數(shù)列的第8項(xiàng)為( )
A.99B.131C.139D.141
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com