A. | $\frac{x}{4}$-$\frac{y}{4}$=1 | B. | $\frac{x}{2}$-$\frac{y}{6}$=1 | C. | $\frac{x}{6}$-$\frac{y}{2}$=1 | D. | $\frac{x}{12}$-$\frac{3y}{4}$=1 |
分析 求出C的坐標,利用基本不等式,即可求出當△OPQ的面積最小時直線l的方程.
解答 解:直線AB的斜率為1,則反射光線所在的直線方程為y-3=-(x+1),
代入點C得m=3,即C(3,-1).
設直線l的方程為$\frac{x}{a}+\frac{y}$=1(a>0,b<0),則S△OPQ=$\frac{1}{2}ab$,且$\frac{3}{a}+\frac{1}{-b}$=1≥2$\sqrt{\frac{3}{-ab}}$,即有-ab≥12,
當且僅當$\frac{3}{a}=\frac{1}{-b}$,即a=6,b=-2等號成立,此時S△OPQ取最小值6,直線l的方程為$\frac{x}{6}-\frac{y}{2}$=1
故選:C.
點評 考查用截距式求直線方程的方法,基本不等式的應用,正確運用基本不等式是解題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,4) | C. | (1,4) | D. | [2,4) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,0) | B. | (-1,2) | C. | (-1,2] | D. | (0,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | -8 | D. | -10 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com