已知橢圓C1(a>b>0)的離心率為,x軸被拋物線C2:y=x2-b截得的線段長等于C1的長半軸長.

(1)求C1,C2的方程;

(2)設(shè)C2與y軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線l:y=kx與C2相交于A,B兩點(diǎn),直線MA,MB分別與C1相交于D,E.

①證明:·為定值;

②記△MDE的面積為S,試把S表示成k的函數(shù),并求S的最大值.

答案:
解析:

  解:(1)由已知


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),C1的焦點(diǎn)且垂直長軸的弦長為1.

(1)求橢圓C1的方程;

(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(hR),C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時,h的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)C1.

(1)求橢圓C1的方程;

(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點(diǎn).C1恰好將線段AB三等分,(  )

(A)a2= (B)a2=13

(C)b2= (D)b2=2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1:=1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C1上任一點(diǎn),MN是圓C2:x2+(y-3)2=1的一條直徑.若與AF平行且在y軸上的截距為3-的直線l恰好與圓C2相切.

(1)求橢圓C1的離心率;

(2)若·的最大值為49,求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

   已知橢圓C1 (a>b>0)的離心率為,直線+2=0與以原點(diǎn)為圓心、以橢圓C1的短半軸長為半徑的圓相切。

  (1)求橢圓C1的方程;

  (2)設(shè)橢圓C1的左焦點(diǎn)為F 1,右焦點(diǎn)F2,直線過點(diǎn)F1且垂直于橢圓的長軸,動直線垂直直線于點(diǎn)P,線段PF2的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

  (3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的點(diǎn),且AB⊥ BC,求Yo的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案