【題目】已知拋物線,圓.
(Ⅰ)是拋物線的焦點(diǎn),是拋物線上的定點(diǎn),,求拋物線的方程;
(Ⅱ)在(Ⅰ)的條件下,過點(diǎn)的直線與圓相切,設(shè)直線交拋物線于,兩點(diǎn),則在軸上是否存在點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(Ⅰ);
(Ⅱ)見解析.
【解析】
(Ⅰ)由題,求得焦點(diǎn)F的坐標(biāo),再求得點(diǎn)A的坐標(biāo),代入求得方程;
(Ⅱ)先由題求得直線l的方程,再假設(shè)存在點(diǎn)使,轉(zhuǎn)化為,然后聯(lián)立方程,求得斜率相加為0,解得M的坐標(biāo)即可.
(Ⅰ)拋物線C的焦點(diǎn)為,
由
代入拋物線方程得p=2,故拋物線C的方程為:
(Ⅱ)當(dāng)直線的斜率不存在時,過點(diǎn) 的直線不可能與圓E相切;
所以過拋物線焦點(diǎn)與圓相切的直線的斜率存在,
設(shè)直線斜率為k,則所求的直線方程為,
所以圓心到直線l的距離為
當(dāng)直線l與圓相切時,有
所以所求的切線方程為或
不妨設(shè)直線l:,交拋物線于兩點(diǎn),
聯(lián)立方程組 得.
所以,,
假設(shè)存在點(diǎn)使,則. 所以
即t=-1故存在點(diǎn) 符合條件
當(dāng)直線l:時,
由對稱性易知點(diǎn)也符合條件
綜上存在點(diǎn)使
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了預(yù)測下月產(chǎn)品銷售情況,找出了近7個月的產(chǎn)品銷售量(單位:萬件)的統(tǒng)計(jì)表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量(萬件) |
但其中數(shù)據(jù)污損不清,經(jīng)查證,,.
(1)請用相關(guān)系數(shù)說明銷售量與月份代碼有很強(qiáng)的線性相關(guān)關(guān)系;
(2)求關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)公司經(jīng)營期間的廣告宣傳費(fèi)(單位:萬元)(),每件產(chǎn)品的銷售價(jià)為10元,預(yù)測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費(fèi))
參考公式及數(shù)據(jù):,相關(guān)系數(shù),當(dāng)時認(rèn)為兩個變量有很強(qiáng)的線性相關(guān)關(guān)系,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國,大學(xué)生就業(yè)壓力日益嚴(yán)峻,伴隨著政府政策引導(dǎo)與社會觀念的轉(zhuǎn)變,大學(xué)生創(chuàng)業(yè)意識,就業(yè)方向也悄然發(fā)生轉(zhuǎn)變.某大學(xué)生在國家提供的稅收,擔(dān)保貸款等很多方面的政策扶持下選擇加盟某專營店自主創(chuàng)業(yè),該專營店統(tǒng)計(jì)了近五年來創(chuàng)收利潤數(shù)(單位:萬元)與時間(單位:年)的數(shù)據(jù),列表如下:
(Ⅰ)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
附:相關(guān)系數(shù)公式
參考數(shù)據(jù).
(Ⅱ)該專營店為吸引顧客,特推出兩種促銷方案.
方案一:每滿元可減元;
方案二:每滿元可抽獎一次,每次中獎的概率都為,中獎就可以獲得元現(xiàn)金獎勵,假設(shè)顧客每次抽獎的結(jié)果相互獨(dú)立.
①某位顧客購買了元的產(chǎn)品,該顧客選擇參加兩次抽獎,求該顧客獲得元現(xiàn)金獎勵的概率.
②某位顧客購買了元的產(chǎn)品,作為專營店老板,是希望該顧客直接選擇返回元現(xiàn)金,還是選擇參加三次抽獎?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在x軸上的圓C與直線切于點(diǎn),圓.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)已知,圓P與x軸相交于兩點(diǎn)(點(diǎn)M在點(diǎn)N的右側(cè)),過點(diǎn)M任作一條傾斜角不為0的直線與圓C相交于兩點(diǎn).問:是否存在實(shí)數(shù)a,使得?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A、B兩點(diǎn).
(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程;
(2)當(dāng)直線l的傾斜角為45時,求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)和是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過坐標(biāo)原點(diǎn).
(1)若直線和直線的斜率都存在且分別為和,求證:;
(2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、、所圍成四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com