已知正方形ABCD的邊長(zhǎng)是4,對(duì)角線AC與BD交于O,將正方形ABCD沿對(duì)角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=.則其中的真命題是(  )
A.①③④B.①②④C.②③④D.①②③
A
如圖所示,易知∠ACO為二面角A-BD-C的平面角,即∠AOC=60°,且AO=OC,故△AOC為正三角形,即③正確;又BD⊥平面ACO,故BD⊥AC,即①正確;在△ADC中,知AD=DC=4,AC=AO=2,故利用余弦定理可解得cos∠ADC=,故④正確,因此選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四面體及其三視圖如圖所示,過(guò)棱的中點(diǎn)作平行于的平面分別交四面體的棱于點(diǎn).

(1)證明:四邊形是矩形;
(2)求直線與平面夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
①△DBC是等邊三角形;
②AC⊥BD;
③三棱錐D-ABC的體積是
2
6

其中正確命題的序號(hào)是______.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列結(jié)論正確的是( 。
A.各個(gè)面都是三角形的幾何體是三棱錐
B.以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將棱長(zhǎng)為2的正方體切割后得一幾何體,其三視圖如圖所示,則該幾何體的體積為_(kāi)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

三個(gè)平面最多把空間分割成              個(gè)部分。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是某幾何體的三視圖,它的正視圖和側(cè)視圖均為矩形,俯視圖為正三角形(長(zhǎng)度單位:cm)
(1)試說(shuō)出該幾何體是什么幾何體;
(2)按實(shí)際尺寸畫(huà)出該幾何體的直觀圖,并求它的表面積及體積.(只要做出圖形,不要求寫(xiě)作法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的外接球的體積為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2013·廣東高考]某三棱錐的三視圖如圖所示,則該三棱錐的體積是(  )
A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案