【題目】已知的兩個頂點坐標是,,的周長為,是坐標原點,點滿足.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設不過原點的直線與曲線交于兩點,若直線的斜率依次成等比數(shù)列,求面積的最大值.
【答案】(Ⅰ);(Ⅱ)1.
【解析】
(Ⅰ),點的軌跡是以為焦點的橢圓(不含左右頂點).利用定義法求點軌跡方程,利用求出點的軌跡的方程即可.
(Ⅱ)設直線的方程為與點的軌跡的方程聯(lián)解,利用根與系數(shù)關系與直線的斜率依次成等比數(shù)列建立方程求出,再求出弦長與.點到直線的距離.運用三角形面積公式建立關于的表達式求出最值.
(Ⅰ)已知,所以,點的軌跡是以為焦點的橢圓(不含左右頂點).
因為,,,所以,,.
所以,點的軌跡方程為.
設,.由得,,又.
故,點的軌跡的方程為,即.
(Ⅱ)由題意可知,直線的斜率存在且不為,
故可設直線的方程為,,,
由,消去得,
則,
即,且,,
故.
∵直線的斜率依次成等比數(shù)列,
∴,
即,又,所以,即.
由,及直線的斜率存在,得,
∵,點到直線的距離
.
,當時取等號,
此時直線的方程為,的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱臺的下底面是邊長為2的正三角形,上地面是邊長為1的正三角形.在下底面的射影為的重心,且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C:的離心率為,其右焦點到橢圓C外一點的距離為,不過原點O的直線l與橢圓C相交于A,B兩點,且線段AB的長度為2.
1求橢圓C的方程;
2求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1(﹣c,0),F2(c,0)分別為雙曲線1(a>0,b>0)的左、右焦點,以坐標原點O為圓心,c為半徑的圓與雙曲線在第二象限交于點P,若tan∠PF1F2,則該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓Γ:的左,右焦點分別為F1(,0),F2(,0),橢圓的左,右頂點分別為A,B,已知橢圓Γ上一異于A,B的點P,PA,PB的斜率分別為k1,k2,滿足.
(1)求橢圓Γ的標準方程;
(2)若過橢圓Γ左頂點A作兩條互相垂直的直線AM和AN,分別交橢圓Γ于M,N兩點,問x軸上是否存在一定點Q,使得∠MQA=∠NQA成立,若存在,則求出該定點Q,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:“冪勢既同,則積不容異“.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為( )
A.πB.πC.4D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,并且經過點.
(1)求橢圓的標準方程;
(2)一條斜率為的直線交橢圓于,兩點(不同于),直線和的斜率分別為,,滿足,試判斷直線是否經過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,其中是實常數(shù).
(1)若,求的取值范圍;
(2)若,求證:函數(shù)的零點有且僅有一個;
(3)若,設函數(shù)的反函數(shù)為,若是公差的等差數(shù)列且均在函數(shù)的值域中,求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com