在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢。
(1)摸出的3個球為白球的概率是多少?  
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

(1)0.05;(2)0.1;(3)1200元。

解析試題分析:(1)把3只黃色乒乓球標記為A、B、C,3只白色的乒乓球標記為1、2、3。
從6個球中隨機摸出3個的基本事件為:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20個
事件E={摸出的3個球為白球},事件E包含的基本事件有1個,即摸出123號3個球,P(E)=1/20=0.05
(2)事件F={摸出的3個球為2個黃球1個白球},事件F包含的基本事件有9個,P(F)=9/20=0.45,事件G={摸出的3個球為同一顏色}={摸出的3個球為白球或摸出的3個球為黃球},P(G)=2/20=0.1,
(3)假定一天中有100人次摸獎,由摸出的3個球為同一顏色的概率可估計事件G發(fā)生有10次,不發(fā)生90次。則一天可賺,每月可賺1200元。
考點:本題考查了古典概型中概率的求法及運用
點評:運用古典概型的概率公式解題時,需確定全部的基本事件的個數(shù),及所求概率對應(yīng)的基本事件數(shù).(2)注意要恰當(dāng)?shù)剡M行分類,分類時應(yīng)不重不漏.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較。在試制某種牙膏新品種時,需要選用兩種不同的添加劑,F(xiàn)有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用。根據(jù)試驗設(shè)計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗。用表示所選用的兩種不同的添加劑的芳香度之和。
(Ⅰ)寫出的分布列;(以列表的形式給出結(jié)論,不必寫計算過程)
(Ⅱ)求的數(shù)學(xué)期望。(要求寫出計算過程或說明道理)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個盒子裝有6張卡片,上面分別寫著如下6個定義域為R的函數(shù):,,,,.
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得到一個新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)生在上學(xué)路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨立的,遇到紅燈的概率都是,遇到紅燈時停留的時間都是2 分鐘. 設(shè)這名學(xué)生在路上遇到紅燈的個數(shù)為變量、停留的總時間為變量,
(1)求這名學(xué)生在上學(xué)路上到第三個路口時首次遇到紅燈的概率;
(2)這名學(xué)生在上學(xué)路上遇到紅燈的個數(shù)至多是2個的概率.
(3)求的標準差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面內(nèi),不等式確定的平面區(qū)域為,不等式組確定的平面區(qū)域為.
(1)定義橫、縱坐標為整數(shù)的點為“整點”. 在區(qū)域中任取3個“整點”,求這些“整點”中恰好有2個“整點”落在區(qū)域中的概率;
(2)在區(qū)域中每次任取一個點,連續(xù)取3次,得到3個點,記這3個點落在區(qū)域中的個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某射手在一次射擊中射中10環(huán)、9環(huán)、8環(huán)、7環(huán), 7環(huán)以下的概率
分別為0.24,0.28,0.19,0.16,0.13,計算這個射手在一次射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不是8環(huán)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)校本課程共開設(shè)了A,B,C,D共4門選修課,每個學(xué)生必須且只能選修1門選修課,現(xiàn)有該校的甲、乙、丙3名學(xué)生:
(1)求這3名學(xué)生選修課所有選法的總數(shù);
(2)求恰有2門選修課沒有被這3名學(xué)生選擇的概率;
(3)求A選修課被這3名學(xué)生選擇的人數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2011年4月28日世界園藝博覽會將在陜西西安浐灞生態(tài)區(qū)舉行,為了接待來自國內(nèi)外的各界人士,需招募一批志愿者,要求志愿者不僅要有一定的氣質(zhì),還需有豐富的人文、地理、歷史等文化知識。志愿者的選拔分面試和知識問答兩場,先是面試,面試通過后每人積60分,然后進入知識問答。知識問答有A,B,C,D四個題目,答題者必須按A,B,C,D順序依次進行,答對A,B,C,D四題分別得20分、20分、40分、60分,每答錯一道題扣20分,總得分在面試60分的基礎(chǔ)上加或減。答題時每人總分達到100分或100分以上,直接錄用不再繼續(xù)答題;當(dāng)四道題答完總分不足100分時不予錄用。
假設(shè)志愿者甲面試已通過且第二輪對A,B,C,D四個題回答正確的概率依次是,且各題回答正確與否相互之間沒有影響.
(Ⅰ) 用X表示志愿者甲在知識問答結(jié)束時答題的個數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅱ)求志愿者甲能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù) )
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程恰有兩個不相等實根的概率;
(2)若從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù),求方程沒有實根的概率.

查看答案和解析>>

同步練習(xí)冊答案