【題目】已知函數(shù),,,為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)在處的切線方程為.求證:對任意的,總有.
【答案】(Ⅰ).
(Ⅱ)見解析.
【解析】分析:(Ⅰ)首先利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,然后由此求出函數(shù)的最小值,只要最小值小于0即可求出實(shí)數(shù)的取值范圍;(Ⅱ)首先由條件得出的值確定函數(shù)解析式,然后由得到,最后構(gòu)造前后兩個(gè)函數(shù),驗(yàn)證前一個(gè)函數(shù)的最小值大于后一個(gè)函數(shù)的最大值。
詳解:(Ⅰ)易得.
若,有,不合題意;
若,有,
,滿足題設(shè);
若,令,得
∴在上單調(diào)遞減;在單調(diào)遞增,
則,∴.
又滿足題設(shè),
綜上所述,所求實(shí)數(shù).
(Ⅱ)證明:易得,,
則由題意,得,解得.
∴,從而,即切點(diǎn)為.
將切點(diǎn)坐標(biāo)代入中,解得. ∴.
要證,即證( ,
只需證 ).
令, .
則由,得,
∴在上單調(diào)遞減;在上單調(diào)遞增,
∴.
又由,得
∴在上單調(diào)遞增;在上單調(diào)遞減,
∴.
∴,
顯然,上式的等號不能同時(shí)取到.
<>故對任意的,總有.年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓關(guān)于直線對稱,圓心在第二象限,半徑為.
(1)求圓的方程;
(2)直線與圓相切,且在軸、軸上的截距相等,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),當(dāng)x∈[0,1]時(shí),f(x)=x,那么在區(qū)間[﹣1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4個(gè)不同的根,則k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法,正確的有__________.
①與共線單位向量的坐標(biāo)是;
②集合與集合是相等集合;
③函數(shù)的圖象與的圖象恰有3個(gè)公共點(diǎn);
④函數(shù)的圖象是由函數(shù)的圖象水平向右平移一個(gè)單位后,將所得圖象在軸右側(cè)部分沿軸翻折到軸左側(cè)替代軸左側(cè)部分圖象,并保留右側(cè)部分而得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)=Asin(A>0,>0,<≤)在處取得最大值2,其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為。
(1)求的解析式;
(2)求函數(shù) 的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心C在直線上.
若圓C與y軸的負(fù)半軸相切,且該圓截x軸所得的弦長為,求圓C的標(biāo)準(zhǔn)方程;
已知點(diǎn),圓C的半徑為3,且圓心C在第一象限,若圓C上存在點(diǎn)M,使為坐標(biāo)原點(diǎn),求圓心C的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)設(shè)函數(shù) ,若對任意的,總存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com