【題目】在數(shù)列中,,且對任意,都有.
(1)計算,,,由此推測的通項公式,并用數(shù)學(xué)歸納法證明;
(2)若(),求無窮數(shù)列的前項之和與的最大項.
【答案】(1),,.推測,見解析
(2)前項和為,最大項為.
【解析】
(1)直接由所給遞推公式計算,并歸納,然后用數(shù)學(xué)歸納法證明;
(2)無窮數(shù)列的前項的和可以分成兩個等比數(shù)列的和,由此可計算和,然后對分類,其偶數(shù)項遞減,奇數(shù)項遞增,但所有奇數(shù)項都滿足,因此有最大.
解:(1)∵,且對任意,都有.
∴,,.
由此推測的通項公式,.
下面利用數(shù)學(xué)歸納法證明:
①當(dāng)時,成立;
②假設(shè)當(dāng)時,.
則時, ,
因此當(dāng)時也成立,
綜上:,成立.
(2)(),
∴,
∴無窮數(shù)列的各項之和.
當(dāng)()時,,單調(diào)遞減,因此當(dāng)時,取得最大值.
當(dāng)()時,,單調(diào)遞增,且.
綜上可得:的最大項為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點為,直線與軸的交點為,與拋物線的交點為,且.
(1)求拋物線的方程;
(2)過拋物線上一點作兩條互相垂直的弦和,試問直線是否過定點,若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求在區(qū)間上的值域;
(2)是否存在實數(shù),對任意給定的,在存在兩個不同的使得,若存在,求出的范圍,若不存在,說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準(zhǔn)線的距離為,且.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若在軸上存在點,過點的直線分別與拋物線相交于,兩點,且為定值,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調(diào)查廣大市民理財產(chǎn)品的選擇情況,隨機(jī)抽取1100名使用理財產(chǎn)品的市民,按照使用理財產(chǎn)品的情況統(tǒng)計得到如下頻數(shù)分布表:
分組 | 頻數(shù)(單位:名) |
使用“余額寶” | |
使用“財富通” | |
使用“京東小金庫” | 40 |
使用其他理財產(chǎn)品 | 60 |
合計 | 1100 |
已知這1100名市民中,使用“余額寶”的人比使用“財富通”的人多200名.
(1)求頻數(shù)分布表中,的值;
(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為,“京東小金庫”的平均年化收益率為,有3名市民,每個人理財?shù)馁Y金有10000元,且分別存入“余額寶”“財富通”“京東小金庫”,求這3名市民2018年理財?shù)钠骄昊找媛剩?/span>
(3)若在1100名使用理財產(chǎn)品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取5人,然后從這5人中隨機(jī)選取2人,求“這2人都使用‘財富通’”的概率.
注:平均年化收益率,也就是我們所熟知的利率,理財產(chǎn)品“平均年化收益率為”即將100元錢存入某理財產(chǎn)品,一年可以獲得3元利息.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)已知點,直線的極坐標(biāo)方程為,它與曲線的交點為,,與曲線的交點為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,, ,,, PA=AB=BC=2. E是PC的中點.
(1)證明: ;
(2)求三棱錐P-ABC的體積;
(3) 證明:平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com