【題目】如圖,在四棱錐中,,,平面平面PAD,E的中點(diǎn),FDC上一點(diǎn),GPC上一點(diǎn),且,.

1)求證:平面平面PAB;

2)若,,求直線PB與平面ABCD所成角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)從線面垂直的證明入手,證明平面PAB,從而證得平面平面PAB;(2)添加輔助線,找到直線PB與平面ABCD所成的角,再在直角三角形中求其正弦值,也可以建立空間直角坐標(biāo)系,利用空間向量法進(jìn)行求解.

1)如圖,取的中點(diǎn)M,連接MD,ME,

,.

,所以,,

所以四邊形MDFE是平行四邊形,所以.

因?yàn)?/span>,所以.

因?yàn)槠矫?/span>平面PAD,平面平面,,所以平面PAD.

因?yàn)?/span>平面PAD,所以.

因?yàn)?/span>,所以平面PAB,

所以平面PAB.

平面EFG,所以平面平面PAB.

2)解法—:過點(diǎn)P于點(diǎn)H,則平面ABCD,以H為坐標(biāo)原點(diǎn),HA所在直線為x軸,過點(diǎn)H且平行于AB的直線為y軸,PH所在直線為z軸,建立如圖所示的空間直角坐標(biāo)系.

在等腰三角形PAD中,,因?yàn)?/span>,所以,解得,則,

所以,,所以.

易知平面ABCD的一個(gè)法向量為,

所以,

所以直線PB與平面ABCD所成角的正弦值.

解法二:由(1)可知平面PAD,

因?yàn)?/span>平面PAD,所以.

在直角三角形PAB中,由勾股定理可得.

過點(diǎn)P于點(diǎn)H,則平面ABCD,連接HB,則是直線PB與平面ABCD所成的角.

在等腰三角形PAD中,,,

因?yàn)?/span>,所以,解得,在直角三角形PHB中,.

所以直線PB與平面ABCD所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右頂點(diǎn)分別為AB,離心率為,長(zhǎng)軸長(zhǎng)為4,動(dòng)點(diǎn)SC上位于x軸上方,直線與直線,分別交于MN兩點(diǎn).

1)求橢圓C的方程

2)求|MN|的最小值

3)當(dāng)最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使△TSB面積為?若存在,請(qǐng)確定點(diǎn)T的個(gè)數(shù);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的右焦點(diǎn)、右頂點(diǎn)分別為F,A,過原點(diǎn)的直線與橢圓C交于點(diǎn)P、Q(點(diǎn)P在第一象限內(nèi)),連結(jié)PA,QF的面積是面積的3倍.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)已知M為線段PA的中點(diǎn),連結(jié)QA,QM

①求證:QF,M三點(diǎn)共線;

②記直線QP,QM,QA的斜率分別為,,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,以原點(diǎn)為圓心,短半軸長(zhǎng)為半徑的圓恰好經(jīng)過橢圓的兩焦點(diǎn),且該圓截直線所得的弦長(zhǎng)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過定點(diǎn)的直線交橢圓于兩點(diǎn),橢圓上的點(diǎn)滿足,試求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,一條斜率為的直線分別交軸于點(diǎn),交橢圓于點(diǎn),且點(diǎn)三等分

1)求該橢圓的方程;

2)若是第一象限內(nèi)橢圓上的點(diǎn),其橫坐標(biāo)為2,過點(diǎn)的兩條不同的直線分別交橢圓于點(diǎn),且直線的斜率之積,求證:直線恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年底,武漢發(fā)生了新冠肺炎疫情,2020年初開始蔓延.黨中央國(guó)務(wù)院面對(duì)“突發(fā)災(zāi)難”果斷采取措施,舉國(guó)上下,萬眾一心支援武漢,全國(guó)各地醫(yī)療隊(duì)陸續(xù)增援湖北,紛紛投身疫情防控與救治病人之中.為了分擔(dān)“抗疫英雄”的后顧之憂,某校教師志愿者開展“愛心輔導(dǎo)”活動(dòng),為抗疫前線醫(yī)務(wù)工作者子女開展在線輔導(dǎo).春節(jié)期間隨機(jī)安排甲乙兩位志愿者為一位初中生輔導(dǎo)功課共3次,每位志愿者至少輔導(dǎo)1次,每一次只有1位志愿者輔導(dǎo),到甲恰好輔導(dǎo)兩次的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足為常數(shù),,且),,,若存在正整數(shù),使得成立;數(shù)列是首項(xiàng)為2,公差為的等差數(shù)列,為其前項(xiàng)和,則以下結(jié)論正確的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,求;

3)設(shè),問:是否存在非零整數(shù),使數(shù)列為遞增數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxx2+ax+lnxaR

1)討論函數(shù)fx)的單調(diào)性;

2)若fx)存在兩個(gè)極值點(diǎn)x1,x2|x1x2|,求|fx1)﹣fx2|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案