【題目】如圖,四棱錐中,底面是邊長為的菱形, .
(1)求證:平面平面;
(2)若,求銳角二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有m個()實數(shù),它們滿足下列條件:①,
②記這m個實數(shù)的和為,
即.
(1)若,證明: ;
(2)若m=5,滿足題設條件的5個實數(shù)構成數(shù)列.設C為所有滿足題設條件的數(shù)列構成的集合.集合,求A中所有正數(shù)之和;
(3)對滿足題設條件的m個實數(shù)構成的兩個不同數(shù)列與,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4一5:不等式選講.
已知函數(shù).
(1)求的解集;
(2)設函數(shù),若對任意的都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若函數(shù)y=h(x)的單調減區(qū)間是,求實數(shù)a的值;
(2)若f(x)≥g(x)對于定義域內的任意x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)y=f(x)的導函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間內單調遞增;
②函數(shù)y=f(x)在區(qū)間內單調遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內單調遞增;
④當x=2時,函數(shù)y=f(x)有極小值;
⑤當x=時,函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.
(1)證明:平面AEB⊥平面BB1C1C;
(2)證明:C1F∥平面ABE;
(3)設P是BE的中點,求三棱錐P B1C1F的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)已知橢圓C: 的離心率為, 是橢圓的兩個焦點, 是橢圓上任意一點,且的周長是.
(1)求橢圓C的方程;
(2)設圓T: ,過橢圓的上頂點作圓T的兩條切線交橢圓于E、F兩點,當圓心在軸上移動且時,求EF的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)證明:當時, ;
(2)設為整數(shù),函數(shù)有兩個零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設點F是AB的中點.
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為AC上一點,求三棱錐B-DEG的體積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com