【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位,得到函數(shù)的圖象,求的值.
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)誘導公式、二倍角的正弦余弦公式以及輔助角公式將函數(shù)化為的形式,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)增區(qū)間;(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位可得到的解析式,從而得求的值.
試題解析:(1)
由得
所以的單調(diào)遞增區(qū)間是
(2)由(1)知把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到的圖象,再把得到的圖象向左平移個單位,得到 的圖象,
即,所以.
科目:高中數(shù)學 來源: 題型:
【題目】若存在實常數(shù)和,使得函數(shù)和對其定義域上的任意實數(shù)分別滿足: 和,則稱直線為和的“隔離直線”.已知, 為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”,低于60分鐘的學生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 |
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學生的“讀書迷”中抽取8名進行集訓,從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3+…+an(x﹣1)n , (其中n∈N*)
(1)求a0及Sn=a1+2a2+3a3+…+nan;
(2)試比較Sn與n3的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)l,m是兩條不同直線,α是一個平面,則下列四個命題正確的是( )
A.若l⊥m,mα,則l⊥α
B.若l∥α,m∥α,則l∥m
C.若l∥α,mα,則l∥m
D.若l⊥α,l∥m,則m⊥α
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓: 過橢圓: ()的短軸端點, , 分別是圓與橢圓上任意兩點,且線段長度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作圓的一條切線交橢圓于, 兩點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)=﹣ x3+ x2+2ax.
(1)若f(x)在( ,+∞)上是單調(diào)減函數(shù),求實數(shù)a的取值范圍.
(2)當0<a<2時,f(x)在[1,4]上的最小值為﹣ ,求f(x)在該區(qū)間的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com