若當(dāng)x∈R時(shí),函數(shù)f(x)=a|x|(a>0且a≠1)滿足f(x)≤1,則函數(shù)y=loga(x+1)的圖象大致為( 。
分析:由條件可得 0<a<1,可得函數(shù)y=loga(x+1)在(-1,+∞)上是減函數(shù),且函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,0),結(jié)合所給的選項(xiàng),得出結(jié)論.
解答:解:∵函數(shù)f(x)=a|x|(a>0且a≠1)滿足f(x)≤1,
∴由|x|≥0,可得a|x|≤a0=1,∴0<a<1.
故函數(shù)y=loga(x+1)在定義域(-1,+∞)上是減函數(shù),且函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,0),
結(jié)合所給的選項(xiàng),只有C滿足條件,
故選:C.
點(diǎn)評(píng):本題主要考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,求得 0<a<1,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若B=60°,c=(
3
-1)a

(1)求角C的大;
(2)已知當(dāng)x∈R時(shí),函數(shù)f(x)=sinx(cosx+asinx)的最大值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若當(dāng)x∈R時(shí),函數(shù)f(x)=a|x|始終滿足0<|f(x)|≤1,則函數(shù)y=loga|
1
x
|的圖象大致為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若當(dāng)x∈R時(shí),函數(shù)f(x)=a|x|始終滿足0<|f(x)|≤1,則a范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=a|x-1|,
(1)當(dāng)a=1時(shí)求方程|f(x)|=g(x)的解;
(2)若方程|f(x)|=g(x)有兩個(gè)不同的解,求a的值;
(3)若當(dāng)x∈R時(shí),不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案