(2013•樂山一模)如圖,梯形ABCD中,AB∥CD,且AB=2CD,對(duì)角線AC、DB相交于點(diǎn)O,若
AD
=
a
,
AB
=
b
,則
AO
=( 。
分析:先證明△DOC∽△BOA,然后根據(jù)AB=2CD得到AO與AD的比例關(guān)系,最后轉(zhuǎn)化成用基底表示即可.
解答:解:∵AB∥CD,AB=2CD,
∴△DOC∽△BOA且AO=2OC
AO
=2
OC
=
2
3
AC

AC
=
AD
+
DC
=
AD
+
1
2
AB
=
a
+
1
2
b

AO
=
2
3
AC
=
2
3
a
+
1
2
b
)=
2
3
a
+
1
3
b

故選D.
點(diǎn)評(píng):本題主要考查了向量加減混合運(yùn)算及其幾何意義,解題的關(guān)鍵是弄清AO與AD的比例關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)一個(gè)體積為12
3
的正三棱柱的三視圖如圖所示,則這個(gè)三棱柱的側(cè)視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)函數(shù)f(x)=-(cosx)1g|x|的部分圖象是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)濟(jì)南高新區(qū)引進(jìn)一高科技企業(yè),投入資金720萬(wàn)元建設(shè)基本設(shè)施,第一年各種運(yùn)營(yíng)費(fèi)用120萬(wàn)元,以后每年增加40萬(wàn)元;每年企業(yè)銷售收入500萬(wàn)元,設(shè)f(n)表示前n年的純收入.(f(n)=前n年的總收入-前n年的總支出-投資額)
(Ⅰ)從第幾年開始獲取純利潤(rùn)?
(Ⅱ)若干年后,該企業(yè)為開發(fā)新產(chǎn)品,有兩種處理方案:
①年平均利潤(rùn)最大時(shí),以480萬(wàn)元出售該企業(yè);
②純利潤(rùn)最大時(shí),以160萬(wàn)元出售該企業(yè);
問哪種方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)已知命題p:“?x∈[1,2],使x2-a<0成立”,若¬p是真命題,則實(shí)數(shù)a的取值范圍是
a≤1
a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)已知數(shù)列{an}的前n項(xiàng)和Sn=
32
(an-1),n∈N*

(1)求{an}的通項(xiàng)公式;
(2)若對(duì)于任意的n∈N*,有k•an≥4n+1成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案