12、正方體的棱長(zhǎng)3,在每個(gè)面的正中央各挖一個(gè)通過對(duì)面的邊長(zhǎng)為1的正方形孔,并且孔的各棱均分別平行于正方形的各棱,則該幾何體的體積為
20
分析:本題考查的知識(shí)點(diǎn)是棱柱的體積與表面積計(jì)算,高由正方體的棱長(zhǎng)3,在每個(gè)面的正中央各挖一個(gè)通過對(duì)面的邊長(zhǎng)為1的正方形孔,故該幾何體的體積等于原來正方體的體積,減挖掉部分的體積.
解答:解:該幾何體的體積等于原來正方體的體積,
減挖掉部分的體積.
由題意可知V=3×3×3-1×1×3-1×1×(3-1)-1×1×(3-1)=20.
故答案為:20
點(diǎn)評(píng):要求一個(gè)組合體的體積,關(guān)鍵是要分析組合體是由哪些簡(jiǎn)單的幾何體組合(挖掉)得到的,然后根據(jù)體積公式分別求出相應(yīng)的體積,加(減)即可得到答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種游戲中,黑、黃兩個(gè)“電子狗”從棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的頂點(diǎn)A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”;黑“電子狗”爬行的路線是AA1→A1D1→…,黃“電子狗”爬行的路線是AB→BB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是正整數(shù)).設(shè)黑“電子狗”爬完2006段,黃“電子狗”爬完2007段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、黃“電子狗”間的距離是( 。
A、0
B、1
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種游戲中,黑、黃兩個(gè)“電子狗”從棱長(zhǎng)為1的正方體ABCD—A1B1C1D1的頂點(diǎn)A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.黑“電子狗”爬行的路線是AA1A1D1→…,黃“電子狗”爬行的路線是ABBB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是正整數(shù)).設(shè)黑“電子狗”爬完2006段、黃“電子狗”爬完2005段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、黃“電子狗”間的距離是

A.0         B.1               C.2                D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案