設(shè)f(x)(x∈R)為偶函數(shù),且f(x-
3
2
)=f(x+
1
2
)恒成立,當x∈[2,3]時,f(x)=x,則當x∈[-2,0]時,f(x)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件求出函數(shù)的周期是2,利用函數(shù)的周期和奇偶性即可求出f(x)在[-2,0]上的表達式.
解答: 解:∵f(x-
3
2
)=f(x+
1
2
),
∴f(x)=f(x+2),
即函數(shù)f(x)的周期是2.
當x∈[0,1]時,x+2∈[2,3],
∴f(x)=f(x+2)=x+2,x∈[0,1],
∵函數(shù)f(x)是偶函數(shù),
∴當x∈[-1,0]時,f(x)=f(-x)=-x+2,
當x∈[-2,-1]時,x+2∈[0,1],
此時f(x)=f(x+2)=x+2+2=x+4,
∴當x∈[-2,0]時,f(x)=
-x+2,x∈[-1,0]
x+4,x∈[-2,-1)

故答案為:f(x)=
-x+2,x∈[-1,0]
x+4,x∈[-2,-1)
點評:本題主要考查函數(shù)表達式的求法,利用條件求出函數(shù)的周期,利用函數(shù)的周期性和奇偶性是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在直線l:x+y-1=0上,點Q在圓C:(x-2)2+(y-2)2=1上
(1)過點P作圓C的切線PM、PN,切點為M、N,求cos∠MPN的最小值;
(2)過點P作圓C的切線PM、PN,切點為M、N,求cos∠MPN≤
3
5
時,點P橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線x2-y2=2的準線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1
3x+
3
,則f(-11)+f(-10)+f(-9)+f(10)+f(11)+f(12)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓9x2+25y2=225,若橢圓上有一點P到右焦點的距離是1,則點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,若S10=15,則a3+a8=( 。
A、3B、6C、9D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列1,3,6,10,15,x,28中,x的值為( 。
A、17B、20
C、21D、以上都可以

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(3,-4)的直線l與半圓x2+y2=4(y≥0)有2個交點,求斜率k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年春節(jié)期間,高速公路車輛劇增.高管局側(cè)控中心在一特定位置從七座以下小型汽車中按先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛進行電子測速調(diào)查,將它們的車速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105).[105,110)后得到如圖所示的頻率分布直圖.
(1)測控中心在采樣中,用到的是什么抽樣方法?并估計這40輛車車速的中位數(shù);
(2)從車速在[80,90)的車輛中任抽取2輛,求抽出的2輛車中車速在[85,90)的車輛數(shù)為0的概率.

查看答案和解析>>

同步練習(xí)冊答案