設(shè)F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線左支上存在一點(diǎn)M,使
.
F1M
•(
.
OM
+
.
OF1
)
=0,O為坐標(biāo)原點(diǎn),且|MF1|=
3
3
|MF2|,則該雙曲線的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:依題意雙曲線左支上存在一點(diǎn)M,使
.
F1M
•(
.
OM
+
.
OF1
)
=0判斷出∠F1MF2=90°,設(shè)出|MF1|=t,則|MF2|=
3
t,進(jìn)而利用雙曲線定義可用t表示出a,根據(jù)勾股定理求得t和c的關(guān)系,最后可求得雙曲線的離心率.
解答: 解:∵雙曲線左支上存在一點(diǎn)M,使
.
F1M
•(
.
OM
+
.
OF1
)
=0,
∴∠F1MF2=90°
設(shè)|MF1|=t,則|MF2|=
3
t,
∴a=
3
-1
2
t,
∵t2+3t2=4c2,∴t=c
∴e=
c
a
=
3
+1
故答案為:
3
+1.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生對(duì)雙曲線定義的理解和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1)
2cos2α-1
1-2sin2α

(2)1+sin(α-2π)•sin(π+α)-2cos2(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果數(shù)據(jù)x1,x2,x3,…,xn的方差是a,若數(shù)據(jù)3x1-2,3x2-2,3x3-2,…,3xn-2的方差為9,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=-
1
f(x)
,且當(dāng)x∈[0,2]時(shí),f(x)=log2(x+1),則f(-2013)+f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
=(2,1),
e2
=(2,-1),點(diǎn)P的坐標(biāo)(x,y)滿足方程
x2
4
-y2
=1,若
OP
=a
e1
+b
e2
(a,b∈R,O為坐標(biāo)原點(diǎn)),則a,b滿足的一個(gè)等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x7+x5+bx-5,若f(-100)=8,那么f(100)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+(
lgx
lg3
)(a∈R且a>1)在區(qū)間[1,2]的最大值與最小值之差為2+(
lg2
lg3
),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知回歸方程為
y
=1.5x+4.5,x∈{1,5,7,13,19},則
.
y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形ABC周長(zhǎng)等于20,面積等于10
3
,∠A=60°,則∠A所對(duì)邊長(zhǎng)a為( 。
A、5B、7C、6D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案