已知f(x)=
(a-2)x-1 (x≤1)
2x2 -ax+1 (x>1)
,若f(x)是單調(diào)遞增函數(shù),則a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)=
(a-2)x-1 (x≤1)
2x2 -ax+1 (x>1)
是單調(diào)遞增函數(shù),可得a-2>0,
a
4
≤1,a-2-1≤2-a+1同時成立,從而可得a的取值范圍.
解答: 解:∵f(x)=
(a-2)x-1 (x≤1)
2x2 -ax+1 (x>1)
是單調(diào)遞增函數(shù),
∴a-2>0,
a
4
≤1,a-2-1≤2-a+1同時成立,
∴2<a≤3.
故答案為:2<a≤3.
點(diǎn)評:本題考查分段函數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性,確定a-2>0,
a
4
≤1,a-2-1≤2-a+1同時成立是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)y=2x2在[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|-1<x<8},B={x|x>4或x<-5},求A∩B、A∪B、∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為負(fù)數(shù),若a1+a2+a3=15,a1a2a3=80,則a8+a9+a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1)、(2)、(3)、(4)四個圖案,每個圖案都是由小正方形拼成,現(xiàn)按同樣的規(guī)律 (小正方形的擺放規(guī)律相同)進(jìn)行拼圖,設(shè)第n個圖形包含f(n)個小正方形.
(1)f(6)=
 
;(2)f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-x-2=0},B={x|x2+4x+p=0},若B⊆A,則實數(shù)p的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題中:
(1)若
a
b
=
a
c
,則
b
=
c

(2)向量
a
=(2,-3),
b
=(
1
2
,-
3
4
),不能作為平面內(nèi)所有向量的一組基底;
(3)若向量
a
=(λ,2),
b
=(-4,-2)夾角為鈍角,則λ的取值范圍為λ>-1;
(4)若
a
b
,
a
c
,則
b
c
;
(5)若三角形ABC中
AB
BC
>0,則三角形ABC為鈍角三角形.
其中正確的命題序號為
 
.(填上所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=exsinx在[0,π]上的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(
1
2
)x, x≥-1
x3+3 , x<-1
則方程f(x)=2的解為
 
;若關(guān)于x的方程f(x)=k有兩個不同的實數(shù)解,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案