【題目】如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.
(2)平面幾何知識(shí)和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.
(1)如圖,過(guò)點(diǎn)作交于,連接,設(shè),連接,,,
又為的角平分線,四邊形為正方形,,
又,,,,,又為的中點(diǎn),
又平面,,平面,
又平面,平面平面,
(2)在中,,,,在中,,,
又,,,,
又,,平面,平面,
故建立如圖空間直角坐標(biāo)系,則,,,
,,,,
設(shè)平面的一個(gè)法向量為,則,,
令,得,
設(shè)平面的一個(gè)法向量為,則,
,令,得
,由圖示可知二面角是銳角,
故二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),已知函數(shù),,,記函數(shù)和的零點(diǎn)個(gè)數(shù)分別是,,則( )
A.若,則B.若,則
C.若,則D.若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著年北京冬奧會(huì)臨近,中國(guó)冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運(yùn)動(dòng)人數(shù)快速上升,冰雪運(yùn)動(dòng)市場(chǎng)需求得到釋放,將引領(lǐng)戶外用品行業(yè)市場(chǎng)增長(zhǎng).下面是年至年中國(guó)雪場(chǎng)滑雪人次(萬(wàn)人次)與同比增長(zhǎng)率的統(tǒng)計(jì)圖,則下面結(jié)論中不正確的是( )
A.年至年,中國(guó)雪場(chǎng)滑雪人次逐年增加
B.年至年,中國(guó)雪場(chǎng)滑雪人次和同比增長(zhǎng)率均逐年增加
C.年與年相比,中國(guó)雪場(chǎng)滑雪人次的同比增長(zhǎng)率近似相等,所以同比增長(zhǎng)人數(shù)也近似相等
D.年與年相比,中國(guó)雪場(chǎng)滑雪人次增長(zhǎng)率約為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo)系,過(guò)點(diǎn)作傾斜角為()的直線交曲線于、兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程,并寫出直線的參數(shù)方程;
(2)過(guò)點(diǎn)的另一條直線與垂直,且與曲線交于,兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年冬奧會(huì),北京市組織中學(xué)生開展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:
(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;
(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;
(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快餐連鎖店,每天以200元的價(jià)格從總店購(gòu)進(jìn)早餐,然后以每份10元的價(jià)格出售.40份以內(nèi),總店收成本價(jià)每份5元,當(dāng)天不能出售的早餐立即以1元的價(jià)格被總店回收,超過(guò)40份的未銷售的部分總店成本價(jià)回收,然后進(jìn)行環(huán)保處理.如果銷售超過(guò)40份,則超過(guò)40份的利潤(rùn)需上繳總店.該快餐連鎖店記錄了100天早餐的銷售量(單位:份),整理得下表:
日銷售量 | 25 | 30 | 35 | 40 | 45 | 50 |
頻數(shù) | 10 | 16 | 28 | 24 | 14 | 8 |
完成下列問(wèn)題:
(1)寫出每天獲得利潤(rùn)與銷售早餐份數(shù)()的函數(shù)關(guān)系式;
(2)估計(jì)每天利潤(rùn)不低于150元的概率;
(3)估計(jì)該快餐店每天的平均利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面五邊形中,是梯形,,,,,是等邊三角形.現(xiàn)將沿折起,連接、得如圖②的幾何體.
(1)若點(diǎn)是的中點(diǎn),求證:平面;
(2)若,在棱上是否存在點(diǎn),使得二面角的余弦值為?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,,,,平面平面,點(diǎn)在上,且.
(Ⅰ)證明:平面平面;
(Ⅱ)當(dāng)異面直線與所成角的余弦值為時(shí),求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點(diǎn).已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)若在區(qū)間上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com