【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于、兩點(diǎn).

(1)求證:“如果直線過點(diǎn),那么”是真命題;

(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由.

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)設(shè)出A,B兩點(diǎn)的坐標(biāo)根據(jù)向量的點(diǎn)乘運(yùn)算求證即可,

(2)把(1)中題設(shè)和結(jié)論變換位置然后設(shè)出A,B兩點(diǎn)的坐標(biāo)根據(jù)向量運(yùn)算求證即可.

試題解析:

證明:(1)設(shè)過點(diǎn)的直線交拋物線于點(diǎn),

當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí),

直線與拋物線相交于點(diǎn),

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,其中

,則

又∵ ,

綜上所述,命題“如果直線過點(diǎn),那么”是真命題.

(2)逆命題是:設(shè)直線交拋物線兩點(diǎn),

如果,那么直線過點(diǎn),

該命題是假命題.

例如:取拋物線上的點(diǎn) .此時(shí)

直線的方程為,而不在直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x +bx,曲線y=f(x)在點(diǎn) (2,f(2))處的切線方程為y=(e-1)x+4,
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是( 。

A.56
B.60
C.120
D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間為了規(guī)定工時(shí)定額,需確定加工零件所花費(fèi)的時(shí)間,為此做了4次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)/個(gè)

2

3

4

5

加工的時(shí)間/小時(shí)

2.5

3

4

4.5

若加工時(shí)間與零件個(gè)數(shù)之間有較好的相關(guān)關(guān)系.

(1)求加工時(shí)間與零件個(gè)數(shù)的線性回歸方程

(2)試預(yù)報(bào)加工10個(gè)零件需要的時(shí)間.

附錄:參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線x2 =1的左、右焦點(diǎn)分別為F1、F2 , 若點(diǎn)P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l過點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于

(1)求直線l的方程.

(2)求圓心在直線l上且經(jīng)過點(diǎn)M(2,1),N(4,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,正方形所在的平面與正三角形所在的平面互相垂直, ,且, 的中點(diǎn).

1)求證: 平面

2)求面與面所成銳二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{ }的公差為1的等差數(shù)列,且a2=3,a3=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案