【題目】在直角坐標系xOy下,曲線C1的參數(shù)方程為 為參數(shù)),曲線C1在變換T的作用下變成曲線C2

1)求曲線C2的普通方程;

2)若m>1,求曲線C2與曲線C3y=m|x|-m的公共點的個數(shù).

【答案】1.(24

【解析】

1)先求出曲線C1的普通方程,再根據(jù)圖象變換可求出曲線C2的普通方程;

2)由題意可得上的點在橢圓E外,當時,曲線的方程化為,聯(lián)立直線與橢圓的方程,由韋達定理可得當時,曲線C2與曲線C3有且只有兩個不同的公共點,又曲線C2與曲線C3都關于y軸對稱,從而可得結論.

解:(1)因為曲線C1的參數(shù)方程為

所以曲線C1的普通方程為,

將變換T代入,得,

所以曲線C2的普通方程為

2)因為m>1,所以上的點在在橢圓E外,

x>0時,曲線的方程化為,

代入,得,(*

因為,

所以方程(*)有兩個不相等的實根x1,x2,

,,所以x1>0x2>0,

所以當x>0時,曲線C2與曲線C3有且只有兩個不同的公共點,

又因為曲線C2與曲線C3都關于y軸對稱,

所以當x<0時,曲線C2與曲線C3有且只有兩個不同的公共點,

綜上,曲線C2與曲線C3y=m|x|-m的公共點的個數(shù)為4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第條的相關規(guī)定:機動車行經(jīng)人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”《中華人民共和國道路交通安全法》第條規(guī)定:對不禮讓行人的駕駛員處以扣分,罰款元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

不“禮讓斑馬線”駕駛員人數(shù)

1)請利用所給數(shù)據(jù)求不“禮讓斑馬線”駕駛員人數(shù)與月份之間的回歸直線方程,并預測該路口月份的不“禮讓斑馬線”駕駛員人數(shù);

2)若從表中月份和月份的不“禮讓斑馬線”駕駛員中,采用分層抽樣方法抽取一個容量為的樣本,再從這人中任選人進行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.

參考公式:,.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠在2016年的減員增效中對部分人員實行分流,規(guī)定分流人員第一年可以到原單位領取工資的100%,從第二年起,以后每年只能在原單位按上一年的領取工資,該廠根據(jù)分流人員的技術特長,計劃創(chuàng)辦新的經(jīng)濟實體,該經(jīng)濟實體預計第一年屬投資階段,第二年每人可獲得元收入,從第三年起每人每年的收入可在上一年的基礎上遞增50%,如果某人分流后工資的收入每年元,分流后進入新經(jīng)濟實體,第年的收入為元;

1)求的通項公式;

2)當時,是否一定可以保證這個人分流一年后的收入永遠超過分流前的年收入?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCDDE2,M為線段BF上一點,且DM⊥平面ACE

1)求BM的長;

2)求二面角ADMB的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運動會.來自109個國家的9300余名運動員同臺競技.經(jīng)過激烈的角逐,獎牌榜的前3名如下:

國家

金牌

銀牌

銅牌

獎牌總數(shù)

中國

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

某數(shù)學愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機抽取3人, 則這3人中中國選手恰好1人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Ey21m1)的離心率為,過點P1,0)的直線與橢圓E交于A,B不同的兩點,直線AA0垂直于直線x4,垂足為A0

(Ⅰ)求m的值;

(Ⅱ)求證:直線A0B恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知{an}是等差數(shù)列,其前n項和Snn22n+b1,{bn}是等比數(shù)列,其前n項和Tn,則數(shù)列{ bn +an}的前5項和為(  )

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廣東省2021年高考將實行模式,其最大特點就是取消文理科,除語文、數(shù)學、外語之外,從物理、歷史這2科中自由選擇一門科目;化學、生物、政治、地理這4科中自由選擇兩門科目作為選考科目.某研究機構為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關,從某學校高一年級的學生中隨機抽取男生、女生個25人進行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10.

1)請完成下面的列聯(lián)表:

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認為選擇全理與性別有關,并說明理由;

3)現(xiàn)從這50名學生中已經(jīng)選取了男生3名,女生2名進行座談,從這5人中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校開設了素描攝影剪紙書法四門選修課,要求每位同學都要選擇其中的兩門課程.已知甲同學選了素描,乙與甲沒有相同的課程,丙與甲恰有一門課程相同,丁與丙沒有相同課程.則以下說法錯誤的是(

A.丙有可能沒有選素描B.丁有可能沒有選素描

C.乙丁可能兩門課都相同D.這四個人里恰有2個人選素描

查看答案和解析>>

同步練習冊答案