求函數(shù)f(x)=log3(1-x2)的值域.
考點(diǎn):對(duì)數(shù)函數(shù)的值域與最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得 0<1-x2≤1,可得f(x)=log3(1-x2)≤0,從而求得函數(shù)的值域.
解答: 解:由于 0<1-x2≤1,故f(x)=log3(1-x2)≤0,
故函數(shù)的值域?yàn)椋?∞,0].
點(diǎn)評(píng):本題主要考查二次函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì),求函數(shù)的值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分解因式:x3-3x2+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間中,有如下命題:
①互相平行的兩條直線在同一平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α內(nèi)任意一條直線m∥平面β,則α∥β;
③若平面α與平面β的交線為m,平面β內(nèi)的直線n⊥直線m,則n⊥α;
④若點(diǎn)P到三角形三個(gè)頂點(diǎn)的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是三角形的外心;
⑤若平面β內(nèi)的直線m垂直于平面α,那么β⊥α;
其中正確的命題為
 
 (填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2
ax+b
(a,b為常數(shù))且方程f(x)-x-6=0有兩個(gè)實(shí)根x1=2,x2=3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)k>
1
2
,解關(guān)于x的不等式:f(x)>
(2k+1)x-k
x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2-
x+3
x+1
的定義域?yàn)锳,g(x)=
(x-a-1)(2a-x)
(a<1)的定義域?yàn)锽.
(1)求A;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=3-2x+
3x+1
的值域(0≤x≤5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
x+2
x-2
,g(x)=log2(x-2)+log2(p-x)(p>2).
(1)求使f(x)與g(x)同時(shí)有意義的實(shí)數(shù)x的取值范圍;
(2)若p>6,求函數(shù)F(x)=f(x)+g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)為y=2-cos
x
2
,若x∈[-
π
2
,π],求函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y,z∈R+,
(1)若x+y+z=6,求x2+4y2+4z2的最小值;
(2)求(
1
x
+
1
2y
+
1
3z
3+
1
12
(xyz)2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案