已知f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值是(    )

A.-37               B.-29                   C.-5                    D.-11

A

解析:f′(x)=6x2-12x,令f′(x)=0,得x=0或x=2.

由f(0)=m,f(2)=m-8,f(-2)=m-40,

可知[f(x)]max=f(0)=m=3,[f(x)]min=f(-2)=3-40=-37.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x3-ax2,g1(x)=f(x),當(dāng)n≥2且n∈N*時,gn(x)=f[gn-1(x)].

(1)若f(1)=1且對任意n∈N*,都有g(shù)n(x0)=x0,求所有x0組成的集合;

(2)若f(1)>3,是否存在區(qū)間A,對n∈N*,當(dāng)且僅當(dāng)x∈A時,就有g(shù)n(x)<0?如果存在,求出這樣的區(qū)間A;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x3-ax2,g1(x)=f(x),當(dāng)n≥2且n∈N*時,gn(x)=f[gn-1(x)].

(1)若f(1)=1且對任意n∈N*,都有g(shù)n(x0)=x0,求所有x0組成的集合;

(2)若f(1)>3,是否存在區(qū)間A,對n∈N*,當(dāng)且僅當(dāng)x∈A時,就有g(shù)n(x)<0?如果存在,求出這樣的區(qū)間A;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x3-6x2+a(a為常數(shù))在[-2,2]上有最小值3.那么f(x)在[-2,2]上的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值為(    )

A.-37           B.-29          C.-5            D.-11

查看答案和解析>>

同步練習(xí)冊答案