【題目】在直角坐標系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP||OQ|的最大值.

【答案】
(1)解:圓C1 (φ為參數(shù)),

轉(zhuǎn)化成直角坐標方程為:(x﹣2)2+y2=4

即:x2+y2﹣4x=0

轉(zhuǎn)化成極坐標方程為:ρ2=4ρcosθ

即:ρ=4cosθ

圓C2 (φ為參數(shù)),

轉(zhuǎn)化成直角坐標方程為:x2+(y﹣1)2=1

即:x2+y2﹣2y=0

轉(zhuǎn)化成極坐標方程為:ρ2=2ρsinθ

即:ρ=2sinθ


(2)解:射線OM:θ=α與圓C1的交點為O、P,與圓C2的交點為O、Q

則:P(2+2cosα,2sinα),Q(cosα,1+sinα)

則:|OP|= = ,

|OQ|= =

則:|OP||OQ|=

=

設sinα+cosα=t(

則:

則關系式轉(zhuǎn)化為:

4 =

由于:

所以:(|OP||OQ|)max=


【解析】(1)首先把兩圓的參數(shù)方程轉(zhuǎn)化成直角坐標方程,再把直角坐標方程為轉(zhuǎn)化成極坐標方程.(2)根據(jù)圓的坐標形式.利用兩點間的距離公式,再利用換元法進一步求出最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點.
(1)證明:三棱錐Q﹣ABP體積VQ﹣ABP ,并指出P和Q滿足什么條件時有AP⊥BQ
(2)求二面角P﹣AB﹣Q平面角的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上的點M(x0 , y0)到點N(2,0)距離的最小值為
(1)求拋物線C的方程;
(2)若x0>2,圓E(x﹣1)2+y2=1,過M作圓E的兩條切線分別交y軸A(0,a),B(0,b)兩點,求△MAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,若對任意,存在,使得 成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,若存在ak , 使得“ak>ak1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個H值.現(xiàn)有如下數(shù)列:①an=1﹣2n;②an=sinn;③an= ④an=lnn﹣n,則存在H值的數(shù)列有( )個.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中xOy,直線C1的參數(shù)方程為 (t是參數(shù)).在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線C2的極坐標方程為ρ=sinθ﹣cosθ(θ是參數(shù)).
(Ⅰ)將曲線C2的極坐標方程化為直角坐標方程,并判斷曲線C2所表示的曲線;
(Ⅱ)若M為曲線C2上的一個動點,求點M到直線C1的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) f(x)=,其中 c>a>0,c>b>0. a,b,c 是△ABC 的三條邊長,給出下列命題:

對于x(-∞,1),都有 f(x)>0;

存在 x>0,使,不能構(gòu)成一個三角形的三邊長;

若△ABC 為鈍角三角形,則存在 x(1,2),使 f(x)=0.

則其中所有正確結(jié)論的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結(jié)論:

①從中任取3球,恰有一個白球的概率是

②從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為

③現(xiàn)從中不放回的取球2次,每次任取1球,則在第一次取到紅球的條件下,第二次再次取到紅球的概率為;

④從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.

其中所有正確結(jié)論的序號是________

查看答案和解析>>

同步練習冊答案