已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.
分析:(1)先對(duì)函數(shù)進(jìn)行求導(dǎo),根據(jù)導(dǎo)函數(shù)大于0原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0原函數(shù)單調(diào)遞減可得答案.
(2)欲求在點(diǎn)(1,f(1))處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率. 最后利用點(diǎn)到直線的距離公式,從而問題解決.
解答:解:(1)解:函數(shù)f(x)=ln(2-x)+ax的定義域?yàn)椋?∞,2)
函數(shù)的導(dǎo)函數(shù)為y′=
1
x-2
+a,
要求函數(shù)的單調(diào)遞增區(qū)間即是求出y′>0即可,
y′=
1
x-2
+a>0,解得x<2-
1
a

可知函數(shù)f(x)=ln(2-x)+ax的單調(diào)遞增區(qū)間為(-∞,2-
1
a
)

同理得:函數(shù)f(x)=ln(2-x)+ax的單調(diào)遞減區(qū)間(2-
1
a
,2)

(2)由于f/(x)=
1
x-2
+a

l的方程為(a-1)x-y+1=0     
由點(diǎn)到直線的距離公式得:a=1.
點(diǎn)評(píng):本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、導(dǎo)函數(shù)的正負(fù)和原函數(shù)的增減性的關(guān)系.屬基礎(chǔ)題,考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當(dāng)a=
1
8
時(shí)
①求f(x)的單調(diào)區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案