【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若為整數(shù),函數(shù)恰好有兩個(gè)零點(diǎn),求的值.
【答案】(1)答案不唯一,具體見(jiàn)解析(2)整數(shù)的值為-3,-2,-1.
【解析】
(1)先求導(dǎo),再討論參數(shù)的正負(fù),進(jìn)一步判斷函數(shù)的單調(diào)性
(2)通過(guò)(1)的結(jié)論可判斷,代入極值點(diǎn)可求得函數(shù)的最大值,根據(jù)題意要使最大值大于零才能保證有兩個(gè)零點(diǎn),再通過(guò)合理賦值可進(jìn)一步鎖定的取值
解:(1),
①當(dāng)時(shí),,則函數(shù)在上單調(diào)遞增。
②當(dāng)時(shí),由得,由得,
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減。
(2)①當(dāng)時(shí),由(1)知函數(shù)在上單調(diào)遞增。
∴函數(shù)在上沒(méi)有兩個(gè)零點(diǎn)。
②當(dāng)時(shí),由(1)知函數(shù)在上單調(diào)遞增,在上單調(diào)遞減。
∴,
設(shè),則函數(shù)在上為增函數(shù),
又,
又,
∴函數(shù)在上小于0,在上大于0.
即當(dāng)整數(shù)小于或等于負(fù)4時(shí),小于0,則函數(shù)沒(méi)有零點(diǎn).
當(dāng)整數(shù),-2,-1時(shí),大于0,且,
所以,,
而在上有,則,
∴函數(shù)在上有兩個(gè)零點(diǎn).
綜上所述,函數(shù)有兩個(gè)零點(diǎn),整數(shù)的值為-3,-2,-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為,直線l與C交于A,B兩點(diǎn),線段AB中點(diǎn)M的橫坐標(biāo)為2.
(1)求C的方程;
(2)若l經(jīng)過(guò)F,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.
(1)證明:BD⊥EG;
(2)若三棱錐,求菱形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離比到定直線x=-2的距離小1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若直線l與(1)中軌跡C交于A,B兩點(diǎn),通過(guò)A和原點(diǎn)O的直線交直線x=-1于D,求證:直線DB平行于x軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】駕駛員“科目一”考試,又稱科目一理論考試、駕駛員理論考試,是機(jī)動(dòng)車駕駛證考核的一部分.根據(jù)《機(jī)動(dòng)車駕駛證申領(lǐng)和使用規(guī)定》,考試內(nèi)容包括駕車?yán)碚摶A(chǔ)、道路安全法律法規(guī)、地方性法規(guī)等相關(guān)知識(shí).考試形式為上機(jī)考試100道題,90分及以上過(guò)關(guān).考試規(guī)則是:若上午第一次考試未通過(guò),當(dāng)場(chǎng)可以立刻補(bǔ)考一次;如果補(bǔ)考還沒(méi)過(guò),那么出了考場(chǎng)繳費(fèi)后,下午可以再考,若還未通過(guò)可再補(bǔ)考一次.已知小王每一次通過(guò)考試的概率均為0.5,且每一場(chǎng)考試與補(bǔ)考是否通過(guò)相互獨(dú)立,則當(dāng)天小王通過(guò)“科目一”考試的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系下,方程的圖形為如圖所示的“幸運(yùn)四葉草”,又稱為玫瑰線.
(1)當(dāng)玫瑰線的時(shí),求以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);
(2)求曲線上的點(diǎn)M與玫瑰線上的點(diǎn)N距離的最小值及取得最小值時(shí)的點(diǎn)M、N的極坐標(biāo)(不必寫詳細(xì)解題過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com