【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長(zhǎng)為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.

【答案】(Ⅰ)見(jiàn)解析; (Ⅱ).

【解析】試題分析:

(1)由題意可證得平面,利用面面垂直的判斷定理即可證得平面平面.

(2)建立空間直角坐標(biāo)系,結(jié)合平面的法向量和題意可得二面角的余弦值是.

試題解析:

(1)取中點(diǎn),連接 ,因?yàn)?/span>是邊長(zhǎng)為2的正三角形,所以, ,

,∴, ,

,∴平面

平面,∴平面平面.

(2)連接,連接,

平面,∴,

的中點(diǎn),∴的中點(diǎn).

為原點(diǎn),分別以、所在直線為、軸建立空間直角坐標(biāo)系,

, , , , , .

設(shè)平面的一個(gè)法向量為,

,得. 

由圖可知,平面的一個(gè)法向量

,

∴二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自由購(gòu)是一種通過(guò)自助結(jié)算購(gòu)物的形式.某大型超市為調(diào)查顧客自由購(gòu)的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:

20以下

[20,30

[30,40

[40,50

[50,60

[6070]

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

1)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在[30,50)且未使用自由購(gòu)的概率;

2)從被抽取的年齡在[5070]使用的自由購(gòu)顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在[5060)的概率;

3)為鼓勵(lì)顧客使用自由購(gòu),該超市擬對(duì)使用自由購(gòu)顧客贈(zèng)送1個(gè)環(huán)保購(gòu)物袋.若某日該超市預(yù)計(jì)有5000人購(gòu)物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購(gòu)物袋?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x22acoskπlnxkN*aRa0).

1)討論函數(shù)fx)的單調(diào)性;

2)若k2018,關(guān)于x的方程fx)=2ax有唯一解,求a的值;

3)當(dāng)k2019時(shí),證明:對(duì)一切x∈(0,+∞),都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南北朝時(shí)期數(shù)學(xué)家、天文學(xué)家——祖暅,提出了著名的祖暅原理:“冪勢(shì)既同,則積不容異也”.“冪”是截面積,“勢(shì)”是幾何體的高,意思是兩等高幾何體,若在每一等高處的兩截面面積都相等,則兩幾何體體積相等.已知某不規(guī)則幾何體與如圖三視圖所對(duì)應(yīng)的幾何體滿足祖暅原理,則該不規(guī)則幾何體的體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,a58,a1023

1)令,證明:數(shù)列{bn}是等比數(shù)列;

2)求數(shù)列{nbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以線段EF為直徑的圓內(nèi)切于圓Ox2+y216

1)若點(diǎn)F的坐標(biāo)為(﹣20),求點(diǎn)E的軌跡C的方程;

2)在(1)的條件下,軌跡C上存在點(diǎn)T,使得,其中M,N為直線ykx+bb≠0)與軌跡C的交點(diǎn),求△MNT的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】普通高中國(guó)家助學(xué)金,用于資助家庭困難的在校高中生.在本地,助學(xué)金分一等和二等兩類(lèi),一等助學(xué)金每學(xué)期1250元,二等助學(xué)金每學(xué)期750元,并規(guī)定:屬于農(nóng)村建檔立卡戶的學(xué)生評(píng)一等助學(xué)金.某班有10名獲得助學(xué)金的貧困學(xué)生,其中有3名屬于農(nóng)村建檔立卡戶,這10名學(xué)生中有4名獲一等助學(xué)金,另6名獲二等助學(xué)金.現(xiàn)從這10名學(xué)生中任選3名參加座談會(huì).

)若事件A表示“選出的3名同學(xué)既有建檔立卡戶學(xué)生,又有非建檔立卡戶學(xué)生”,求A的概率;

)設(shè)X為選出的3名同學(xué)一學(xué)期獲助學(xué)金的總金額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,

的面積等于,求;

,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,,.數(shù)列滿足,且.

1)求的值;

2)求數(shù)列的通項(xiàng)公式;

3)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案