已知直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是.
(1)求a的值;
(2)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是∶;若能,求P點(diǎn)坐標(biāo);若不能,說明理由.
解:(1)直線l2:2x-y-=0.
所以l1與l2的距離d==,
所以=
所以|a+|=.
因?yàn)?i>a>0,所以a=3.
(2)假設(shè)存在點(diǎn)P,設(shè)點(diǎn)P(x0,y0),若P點(diǎn)滿足條件②,則P點(diǎn)在與l1、l2平行的直線l′:2x-y+C=0上,
且=,即C=,或C=,
所以2x0-y0+=0,或2x0-y0+=0;
若P點(diǎn)滿足條件③,由點(diǎn)到直線的距離公式,
有=,
即|2x0-y0+3|=|x0+y0-1|,
所以x0-2y0+4=0或3x0+2=0;
由于P在第一象限,所以3x0+2=0不可能.
聯(lián)立方程2x0-y0+=0和x0-2y0+4=0,
解得應(yīng)舍去.
由解得
∴存在點(diǎn)P(,)同時(shí)滿足三個(gè)條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、充分不必要條件 | B、必要不充分條件 | C、充分且必要條件 | D、既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
λ |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com