【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
【答案】(1)曲線C1的極坐標(biāo)方程為ρ2﹣10ρcosθ﹣8ρsinθ+16=0;(2)(2,0), .
【解析】
試題(1)把C1的參數(shù)方程化為普通方程,再化為極坐標(biāo)方程;(2)曲線C1的極坐標(biāo)方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲線C2的極坐標(biāo)方程為ρ=2cosθ,聯(lián)立,即可求C1與C2交點(diǎn)的極坐標(biāo).
試題解析:
(Ⅰ)曲線C1的參數(shù)方程為 (t為參數(shù)), 則曲線C1的普通方程為(x﹣5)2+(y﹣4)2=25,
曲線C1的極坐標(biāo)方程為ρ2﹣10ρcosθ﹣8ρsinθ+16=0.
(Ⅱ)曲線C1的極坐標(biāo)方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲線C2的極坐標(biāo)方程為ρ=2cosθ,聯(lián)立得 ,又θ∈[0,2π),則θ=0或 ,
當(dāng)θ=0時(shí),ρ=2;當(dāng) 時(shí), ,所以交點(diǎn)坐標(biāo)為(2,0),
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值和最小值;
(3)若對任意的,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,o)滿足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的右焦點(diǎn)為,點(diǎn)分別是橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動點(diǎn)(與軸的交點(diǎn)除外),直線交橢圓于另一個(gè)點(diǎn).
(1)當(dāng)直線經(jīng)過橢圓的右焦點(diǎn)時(shí),求的面積;
(2)①記直線的斜率分別為,求證:為定值;
②求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在[﹣1,1]上的奇函數(shù)f(x)滿足當(dāng)﹣1≤x<0時(shí),f(x)=.
(1)求f(x)在[﹣1,1]上的解析式;
(2)當(dāng)x∈(0,1]時(shí),函數(shù)g(x)=﹣m有零點(diǎn),試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語文閱讀理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同類班級進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | |||
總計(jì) |
(1)能否據(jù)此判斷有把握認(rèn)為加強(qiáng)語文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?
(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,小剛正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,現(xiàn)小明、小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明先正確解答完的概率;
(3)現(xiàn)從乙班成績優(yōu)秀的名同學(xué)中任意抽取兩人,并對他們的答題情況進(jìn)行全程研究,記兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切于,且圓心在直線上.
(1)求圓的方程;
(2)已知直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com