已知橢圓C的焦點在y軸上,且離心率為.過點(0,3)的直線l與橢圓C相交于兩點A、B

    (1)求橢圓C的方程;

(2)若以AB為直徑的圓恰好經(jīng)過橢圓C的右頂點M,求此時l的方程.

 

 

 

 

 

 

【答案】

 解:(1)由題知a2=mb2=1,∴ c2=m-1.

,解得m=4.

∴ 橢圓的方程為.  …………………………………………………4分

(2)由(1)知M(1,0),且據(jù)題知=0.

l的斜率不存在時,A(0,2),B(0,-2),

=(-1,2),=(-1,-2),

=(-1)×(-1)+2×(-2)=-3≠0,不符合條件.……………………6分

l的斜率存在時,設l的斜率為k,則l的方程為y=kx+3.

A(x1y1),B(x2y2),于是=(x1-1,y1),=(x2-1,y2).

聯(lián)立l和橢圓的方程:  消去y,整理得(4+k2)x2+6kx+5=0,

∴ Δ=(6k)2-4×(4+k2)×5=16k2-80>0,解得k2>5.

,

y1y2=(kx1+3)(kx2+3)=k2x1x2+3k(x1+x2)+9=. …………………10分

=x1x2-(x1+x2)+1+y1y2

                 =++1+

                 =

=0,解得k=-3,或k=5(均滿足條件).

∴  l的方程為y=-3x+3,或y=5x+3.………………………………………12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知橢圓C的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點A、B.(1)求橢圓C的方程;(2)設P為橢圓上一點,且滿足O為坐標原點),當||<時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知橢圓C的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點AB.    (1)求橢圓C的方程;(2)設P為橢圓上一點,且滿足O為坐標原點),當||<時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:數(shù)學公式的焦點在y軸上,且離心率為數(shù)學公式.過點M(0,3)的直線l與橢圓C相交于兩點A、B.
(1)求橢圓C的方程;
(2)設P為橢圓上一點,且滿足數(shù)學公式(O為坐標原點),當數(shù)學公式時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省樂山市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點A、B.
(1)求橢圓C的方程;
(2)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案