【題目】如果曲線2|x|﹣y﹣4=0與曲線x2+λy2=4(λ<0)恰好有兩個不同的公共點(diǎn),則實(shí)數(shù)λ的取值范圍是

【答案】[﹣ ,0)
【解析】解:由2|x|﹣y﹣4=0可得y=2|x|﹣4,

當(dāng)x≥0時(shí),y=2x﹣4;當(dāng)x<0時(shí),y=﹣2x﹣4,

∴函數(shù)y=2|x|﹣4的圖象與方程x2+λy2=4的曲線必相交于(±2,0)

∴為了使函數(shù)y=2|x|﹣4的圖象與方程x2+λy2=1的曲線恰好有兩個不同的公共點(diǎn),

則y=2x﹣4代入方程x2+λy2=1,整理可得(1+4λ)x2﹣16λx+16λ﹣4=0,

當(dāng)λ=﹣ 時(shí),x=2滿足題意,由于△>0,2是方程的根,∴ <0,

解得﹣ <λ< 時(shí),方程兩根異號,滿足題意;

y=﹣2x﹣4代入方程x2+λy2=1,整理可得(1+4λ)x2+16λx+16λ﹣4=0

當(dāng)λ=﹣ 時(shí),x=﹣2滿足題意,由于△>0,﹣1是方程的根,∴ <0,

解得﹣ <λ< 時(shí),方程兩根異號,滿足題意;

∵λ<0,∴實(shí)數(shù)λ的取值范圍是[﹣ ,0).

所以答案是[﹣ ,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓C:x2+(y﹣2)2=5與恒過點(diǎn)P(0,1)的直線交于A,B兩點(diǎn),則弦AB的中點(diǎn)M的軌跡方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個正方形ABCD和ADEF所在平面互相垂直,設(shè)M、N分別是BD和AE的中點(diǎn),那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE異面.其中假命題的個數(shù)為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3﹣ax在(﹣∞,﹣1]上是單調(diào)函數(shù),則a的取值范圍是(
A.(3,+∞)
B.[3,+∞)
C.(﹣∞,3)
D.(﹣∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,M、N分別是棱SC、BC的中點(diǎn),且MN⊥AM,若AB=2 ,則此正三棱錐外接球的體積是( )

A.12π
B.4 π
C. π
D.12 π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線C:x2=2py(p>0),其焦點(diǎn)為F,C上的一點(diǎn)M(4,m)滿足|MF|=4.

(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)E(﹣1,0)作不經(jīng)過原點(diǎn)的兩條直線EA,EB分別與拋物線C和圓F:x2+(y﹣2)2=4相切于點(diǎn)A,B,試判斷直線AB是否經(jīng)過焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)g(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x>0時(shí),xg(x)﹣f(x)<0,則使得f(x)<0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(0,1)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(﹣1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為 (a為常數(shù),n∈N*).
(1)求a1 , a2 , a3
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an

查看答案和解析>>

同步練習(xí)冊答案