設(shè)x1、x2、y1、y2是實(shí)數(shù),且滿足x12+x22≤1,證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).
【答案】分析:原不等式即為(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0,由此聯(lián)想到根的判別式而構(gòu)造一元二次方程:(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)=0,實(shí)現(xiàn)問題的轉(zhuǎn)化,從而使不等式得到證明.
解答:證明:(1)當(dāng)x12+x22=1時(shí),原不等式成立.
(2)當(dāng)x12+x22<1時(shí),聯(lián)想根的判別式,可構(gòu)造函數(shù)f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1),其根的判別式△=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).
由題意x12+x22<1,函數(shù)f(x)的圖象開口向下.
又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,
因此拋物線與x軸必有公共點(diǎn).
∴△≥0.
∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,
即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).
點(diǎn)評(píng):本題主要考查了不等式的證明,本題利用構(gòu)造法證明不等式,領(lǐng)悟并掌握構(gòu)造法,不僅在不等式的證明中能受益,在其它數(shù)學(xué)解題中也可以簡化解題.