某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元到1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.

(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求,并分析函數(shù)是否符合這個(gè)要求,并說明原因;

(2)若該公司采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)的值.

 

【答案】

(1)① 是定義域上是增函數(shù);② 恒成立;③ 恒成立.不符合公司要求.(2)

【解析】

試題分析:(1)要將文字語言轉(zhuǎn)化為數(shù)學(xué)語言主要依據(jù)是相應(yīng)概念的理解,由獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,可聯(lián)想到函數(shù)增減性的定義;由獎(jiǎng)金不超過9萬元,可聯(lián)想到函數(shù)的值域;由獎(jiǎng)金不超過投資收益的20%,收益就是題中的值,即可用來表示,判斷給定函數(shù)是否符合題意其實(shí)也就是去遂一進(jìn)行檢驗(yàn); (2)所給函數(shù)是一個(gè)分式型函數(shù),先采用分子分離的方法化簡(jiǎn)一下,以便出增函數(shù)得出一個(gè)關(guān)于的不等式,結(jié)合單調(diào)增易得最大值,由其小于等于9得到關(guān)于的第二個(gè)條件,再由代入可得一不等式恒成立,進(jìn)而得到關(guān)于的第三個(gè)條件,這三條件共同確定出的范圍.

試題解析:(1)設(shè)獎(jiǎng)勵(lì)函數(shù)模型為,按公司對(duì)函數(shù)模型的基本要求,函數(shù)滿足:當(dāng)時(shí),

是定義域上是增函數(shù);

恒成立

恒成立.                                          3分

對(duì)于函數(shù)模型,當(dāng)時(shí),是增函數(shù);

,∴恒成立;

但當(dāng)時(shí),,即不恒成立. 

綜上,該函數(shù)模型不符合公司要求.                              6分

(2)對(duì)于函數(shù)模型,即,

① 當(dāng),即時(shí),上是增函數(shù); 8分

② 為使對(duì)在恒成立,則,即; 10分

③ 為使對(duì)在恒成立,則,

,即對(duì)恒成立, 12分

綜上,,又,∴.                            14分

考點(diǎn):1.文字語言與數(shù)學(xué)語言的互化;2.函數(shù)的單調(diào)性;3.函數(shù)的值域

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元~1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.
(Ⅰ)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求;
(Ⅱ)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(1)y=
x150
+2
;(2)y=4lgx-3.試分析這兩個(gè)函數(shù)模型是否符合公司要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元到1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型的基本要求,并分析函數(shù)y=
x
150
+2
是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y=
10x-3a
x+2
作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元到1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.
(Ⅰ)請(qǐng)分析函數(shù)y=
x
150
+2是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;
(Ⅱ)若該公司采用函數(shù)模型y=
10x-3a
x+2
作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市通州區(qū)高三重點(diǎn)熱點(diǎn)專項(xiàng)檢測(cè)數(shù)學(xué) 題型:解答題

.(本小題滿分14分)

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元~1000萬元的投資收 

益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬元)隨投資收益x(單

位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.現(xiàn)

有兩個(gè)獎(jiǎng)勵(lì)方案的函數(shù)模型:(1);(2).試問這兩個(gè)函數(shù)模

型是否符合該公司要求,并說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州蕭山三校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本小題14分)

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元~1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.

(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求;

(2)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(1)y=;(2)y=4lgx-3.試分析這兩個(gè)函數(shù)模型是否符合公司要求?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案