已知平面和直線,給出下列條件:①;②;③;④;⑤.則使成立的充分條件是      .(填序號)
②⑤

試題分析:根據(jù)線面垂直的判定定理可知使成立的充分條件是②⑤.
點評:判斷此類問題,要緊扣相應的判定定理和性質(zhì)定理,定理中要求的條件缺一不可,如果換個說法,也要仔細考慮.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:; (2)求證:;
(3)設中點,在邊上找一點,使平面,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,

(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐的底面為等腰梯形,,,垂足為,是四棱錐的高。

(Ⅰ)證明:平面 平面
(Ⅱ)若,60°,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點G,使EG∥平面PFD,當PA=AB=4時,求四面體E-GFD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在三棱錐中,,是等腰直角三角形,,中點. 則與平面所成的角等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在三棱錐中,是邊長為4的正三角形,,、分別是的中點;

(1)證明:平面平面
(2)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四面體中,,且E、F分別是AB、BD的中點,

求證:(1)直線EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知如圖(1),正三角形ABC的邊長為2a,CDAB邊上的高,EF分別是ACBC邊上的點,且滿足,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).

(Ⅰ) 求二面角B-AC-D的大;
(Ⅱ) 若異面直線ABDE所成角的余弦值為,求k的值.

查看答案和解析>>

同步練習冊答案