【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )
A.①③B.③④C.①②D.②③④
【答案】A
【解析】
在①中:由題意得 AC⊥平面SBD,從而平面EMN∥平面SBD,由此得到AC⊥EP;在②中:由異面直線的定義可知:EP與BD是異面直線;在③中:由平面EMN∥平面SBD,從而得到EP∥平面SBD;在④中:由已知得EM⊥平面SAC,從而得到EP與平面SAC不垂直.
如圖所示,連接AC、BD相交于點O,連接EM,EN.
在①中:由正四棱錐S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分別是BC,CD,SC的中點,
∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,
∴AC⊥平面EMN,∴AC⊥EP.故正確.
在②中:由異面直線的定義可知:EP與BD是異面直線,不可能EP∥BD,因此不正確;
在③中:由①可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正確.
在④中:由①同理可得:EM⊥平面SAC,
若EP⊥平面SAC,則EP∥EM,與EP∩EM=E相矛盾,
因此當(dāng)P與M不重合時,EP與平面SAC不垂直.即不正確.
∴恒成立的結(jié)論是:①③.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂園按時段收費,收費標(biāo)準(zhǔn)為:每玩一次不超過小時收費10元,超過小時的部分每小時收費元(不足小時的部分按小時計算).現(xiàn)有甲、乙二人參與但都不超過小時,甲、乙二人在每個時段離場是等可能的。為吸引顧客,每個顧客可以參加一次抽獎活動。
(1) 用表示甲乙玩都不超過小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-m|-|2x+3m|(m>0).
(1)當(dāng)m=1時,求不等式f(x)≥1的解集;
(2)對于任意實數(shù)x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)過點且斜率為的直線與圓交于,兩點.
(1)求的取值范圍;
(2)若,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右焦點為,左、右頂點分別為、,上、下頂點分別為、,連結(jié)并延長交橢圓于點,連結(jié),,記橢圓的離心率為.
(1)若,.
①求橢圓的標(biāo)準(zhǔn)方程;
②求和的面積之比.
(2)若直線和直線的斜率之積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,O為AD中點.
(1)求異面直線PB與CD所成角的余弦值;
(2)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在R上函數(shù),有以下四個命題:
(1)直線與的圖像的公共點個數(shù)一定為1;
(2)若在區(qū)間上單調(diào)增函數(shù),在上也是單調(diào)增函數(shù),則函數(shù)在R上一定是單調(diào)增函數(shù);
(3)若為奇函數(shù),則一定有;
(4)若,則函數(shù)一定不是偶函數(shù).
其中正確的命題序號是_______.(請寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的定義域為,對于定義域內(nèi)的任意存在實數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”.
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,寫出所有的值;若不具有“性質(zhì)”,請說明理由.
(2)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時,,求當(dāng)時函數(shù)的解析式;若與交點個數(shù)為1001個,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com