設(shè)函數(shù)f(x)=sin(ωx+φ),條件P:“f(0)=0”;條件Q:“f(x)為奇函數(shù)”,則P是Q的( )
A.充要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件
【答案】分析:根據(jù)奇函數(shù)的圖象和性質(zhì),我們分別判斷條件P⇒條件Q與條件Q⇒條件P的真假,進(jìn)而充要條件的定義,即可得到答案.
解答:解:若“f(0)=0”,則sinφ=0,則φ=kπ,k∈Z,
則f(x)=sin(ωx+kπ),k∈Z,
則f(-x)=sin(-ωx+kπ)=-f(x),即“f(x)為奇函數(shù)”,
故P是Q的充分條件;
若“f(x)為奇函數(shù)”,且函數(shù)的f(x)的定義域?yàn)镽,則“f(0)=0”一定成立
故P是Q的必要條件;
P是Q的充要條件;
故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是必要條件,充分條件與充要條件的判斷,其中根據(jù)正弦型函數(shù)的圖象和性質(zhì),分別判斷出條件P⇒條件Q與條件Q⇒條件P的真假,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(diǎn)(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;
(3)在給定的坐標(biāo)系上畫出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2π+?)(-π<?<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π8

(Ⅰ)求?;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(Ⅲ)證明直線5x-2y+c=0與函數(shù)y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π8

(1)求φ;
(2)怎樣由函數(shù)y=sin x的圖象變換得到函數(shù)f(x)的圖象,試敘述這一過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對(duì)稱軸方程;
(2)將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位長度,得到函數(shù)g(x)的圖象,求g (x)在區(qū)間[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),給出以下四個(gè)論斷:
①它的圖象關(guān)于直線x=
π
12
對(duì)稱;        
②它的周期為π;
③它的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱;      
④在區(qū)間[-
π
6
,0]上是增函數(shù).
以其中兩個(gè)論斷作為條件,余下兩個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的兩個(gè)命題:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步練習(xí)冊(cè)答案