計算:(1)(3+4i)+(6-i)+2i;?

?(2)(1+i)+(-i)+i.?

解:(1)(3+4i)+(6-i)+2i=(3+6)+(4-1+2)i=9+5i.?

(2)(1+i)+(-i)+i=(1+)+(-1+)=-i.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列四個結(jié)論中,正確結(jié)論的序號是

①有3.918%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
②有5%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
③有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
④有99%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”.
x 0 1 3 4
y 2.2 4.3 4.8 6.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在計算“1×2+2×3+…+n(n+1)”時,有如下方法:
先改寫第k項:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
類比上述方法,請你計算“1×3+2×4+…+n(n+2)”,其結(jié)果寫成關(guān)于n的一次因式的積的形式為:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中程序是計算2+3+4+5+6的值的程序.在WHILE后的①處和在s=s+i之后的②處所就填寫的語句可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計算:
3(-4)3
-(
1
2
)0+0.25
1
2
×(
-1
2
)-4
;
(2)計算:log3
427
3
+2log510+log50.25+71-log72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計算:
3(-4)3
-(
1
2
)0+0.25
1
2
×(
-1
2
)-4

(2)解關(guān)于x的方程:log5(x+1)-log
1
5
(x-3)=1

查看答案和解析>>

同步練習(xí)冊答案