已知a,b∈R,且a>b,則( 。
A、a2>b2
B、
a
b
>1
C、lg(a-b)>0
D、(
1
2
)a<(
1
2
)b
考點:不等式的基本性質(zhì)
專題:函數(shù)的性質(zhì)及應用,不等式的解法及應用
分析:利用不等式的基本性質(zhì),可判斷A,B,根據(jù)對數(shù)函數(shù)的圖象和性質(zhì),可判斷C,根據(jù)指數(shù)函數(shù)的圖象和性質(zhì),可判斷D.
解答: 解:當0>a>b時,a2<b2,故A不成立;
當a>0>b時,
a
b
<1
,故B不成立;
當0<a-b<1時,lg(a-b)<0,故C不成立,
當a>b時,(
1
2
)
a
(
1
2
)
b
恒成立,故D正確,
故選:D
點評:本題考查的知識點是不等式的基本性質(zhì),指數(shù)函數(shù)的圖象和性質(zhì),對數(shù)函數(shù)的圖象和性質(zhì),難度中檔.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=
4cosθ
sin2θ
,直線l的參數(shù)方程為
x=tcosα
y=1+tsinα
(t為參數(shù),0≤a<π).
(1)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(2)若直線l經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線
x2
m
-
y2
n
=1(m>0,n>0)的離心率為2,有一個焦點與拋物線y2=4mx的焦點重合,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將圓心角為120°,面積為3π的扇形,作為圓錐的側(cè)面,圓錐的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,下列各 式運算結(jié)果為向量
BD1
的是( 。
①(
A1D1
-
A1A
)-
AB
;    
②(
BC
+
BB1
)-
D1C1

③(
AD
-
AB
)-
DD1
;  
④(
B1D1
-
A1A
)+
DD1
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)有f(x)=-f(x+1),且x∈[-1,1]時f(x)=1-x2.函數(shù)g(x)=
lgx(x>0)
-
1
x
(x<0)
 則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,4]內(nèi)的零點個數(shù)為( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點D是線段BC的中點,BC=6,且|
AB
+
AC
|=|
AB
-
AC
|,則|
AD
|=( 。
A、6
B、2
3
C、3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
x+y≥2
x≤1
y≤2
,則目標函數(shù)z=-x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x+
4
x
+3在(-∞,0)上( 。
A、有最大值-1,無最小值
B、無最大值,有最小值-1
C、有最大值7,有最小值-1
D、無最大值,有最小值7

查看答案和解析>>

同步練習冊答案