【題目】函數f(x)=a (0<a<1)的單調遞增區(qū)間是( )
A.(﹣∞, )
B.( ,+∞)
C.(﹣∞,﹣ )
D.(﹣ ,+∞)
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 , AD=2,求四邊形繞AD旋轉一周所圍成幾何體的表面積及體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,過橢圓: ()焦點的直線交于兩點, 為的中點,且的斜率為9.
(Ⅰ)求的方程;
(Ⅱ)是的左、右頂點, 是上的兩點,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=π/2,AB=BC=2AD=4,E,F分別是AB,CD上的點,EF∥BC,AE=x,G是BC的中點,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)當x=2時,①求證:BD⊥EG;②求二面角D﹣BF﹣C的余弦值;
(2)三棱錐D﹣FBC的體積是否可能等于幾何體ABE﹣FDC體積的一半?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0且a≠1,函數f(x)=loga(x+1), , 記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)﹣m=0在區(qū)間[0,1)內有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.
(1)求a,b的值;
(2)設全集U=AUB,求(UA)U(UB).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+4ax+2a+6.
(1)若函數f(x)=log2 f(x)的最小值為2,求a的值;
(2)若對任意x∈R,都有f(x)≥0成立,求函數g(a)=2﹣a|a+3|的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】非空集合A中的元素個數用(A)表示,定義(A﹣B)= ,若A={﹣1,0},B={x||x2﹣2x﹣3|=a},且(A﹣B)≤1,則a的所有可能值為( )
A.{a|a≥4}
B.{a|a>4或a=0}
C.{a|0≤a≤4}
D.{a|a≥4或a=0}
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com